
RSCOEP Department of Computer Engineering Prof S.U.Puri 129

JSPM’s
RAJARSHI SHAHU COLLEGE OF ENGINEERING,

POLYTECHNIC
Department of Computer Engineering

Academic Year: 2024-25

Subject – OOP Using C++ (313304) Question Bank – Unit -4

Unit 4:Pointers and Polymorphism in C++
CO4 - Implement Polymorphism in C++.

Sr.No Questions Mar
ks

Year

1. What are the rules of virtual function(Write any two) 2 S-24

State any four rules for virtual functions. 4 S-23

1. Function Prototype Matching: The prototype (including return type, name, and

parameter list) of a virtual function must be identical in the base class and all

derived classes that override it. This ensures that the compiler can identify the

function correctly even when using a base class pointer or reference.

2. Access through Base Class Pointer or Reference: Virtual functions are typically

accessed through pointers or references of the base class type. This allows for

runtime polymorphism, where the actual function called depends on the object's

dynamic type at runtime, not the pointer or reference type.

3. Declaration: Virtual functions are declared using the virtual keyword in the base

class.

4. Member Function: Virtual functions must be member functions of a class. They

cannot be static members.

5. Access through Pointers or References: Virtual functions are typically accessed

through pointers or references of the base class type. This enables runtime

polymorphism, where the specific function to be called is determined at runtime

based on the actual object type.

6. Optional Override: A derived class can optionally choose to override

(redefine) the behavior of an inherited virtual function. This allows for

specialization of the function in the derived class.

1M
each
(Any
2

corre
ct

Rule
s)

Mark - 16

RSCOEP Department of Computer Engineering Prof S.U.Puri 130

7. Base Class Definition: A virtual function must be defined (have a body) in the

base class, even if it's not overridden in any derived classes.

8. Friend Functions: Virtual functions can be declared as friend functions of

another class. This allows the friend function to access the virtual function directly,

even if it's called through a base class pointer.

9. No Virtual Constructors: Class cannot have virtual constructors, but can have

virtual destructors.

2. Explain virtual function with suitable example.Give the rules of virtual
function.

4 S-24

Virtual Function:
A virtual function (also known as virtual methods) is a member function that is
declared within a base class and is re-defined (overridden) by a derived class.
When you refer to a derived class object using a pointer or a reference to the base
class, you can call a virtual function for that object and execute the derived class’s
version of the method.
Example:
#include<iostream>
using namespace std;
class base
{
public:
virtual void print()
{
cout << "print base class\n";
}
void show()
{
cout << "show base class\n";
}
};
class derived : public base
{
public:
void print()
{
cout << "print derived class\n";
}
void show()
{
cout << "show derived class\n";
}
};
int main()
{
base* bptr;
derived d;

RSCOEP Department of Computer Engineering Prof S.U.Puri 131

bptr = &d;
bptr->print();
bptr->show();
}

Rules for virtual functions:
1. The virtual functions must be members of some class.
2. They cannot be static members.
3. They are accessed by using object pointers.
4. A virtual function can be a friend of another class.
5. A virtual function in a base class must be defined, even though it may not be
used.
6. The prototypes of the base class version of a virtual function and all the derived
class versions must be identical.
7. We cannot have virtual constructors, but we can have virtual destructors.
8. While a base pointer can point to any type of the derived object, the reverse is
not true we cannot use a pointer to a derived class to access an object of the base
type.
9. When a base pointer points to a derived class, incrementing or decrementing it
will not make it to point to the next object of the derived class it is incremented or
decremented only relative to its base type.
10. If a virtual function is defined in the base class, it need not be necessarily
redefined in the derived class.

3. Describe function overloading and function overriding with suitable example 4 S-24

Describe Function overloading with suitable program.(Repeat) 6 W-22

Function Overloading

Function overloading allows multiple functions to have the same name within the

same scope, as long as their parameter lists are different. This is a form of compile-

time polymorphism.

#include <iostream>

using namespace std;

void add(int a, int b)

{

cout << "Sum of integers: " << a + b << endl;

}

void add(double a, double b) {

cout << "Sum of doubles: " << a + b << endl;

}

int main() {

RSCOEP Department of Computer Engineering Prof S.U.Puri 132

add(2, 3); // Calls the first add function

add(2.5, 3.5); // Calls the second add function

return 0;

}

Function Overriding:

Function overriding occurs when a derived class redefines a function that is already

defined in its base class. The function signature (name and parameters) must be

identical in both classes. This is a form of runtime polymorphism.

#include <iostream>

using namespace std;

class Base {

public:

virtual void display() {

cout << "Base class display" << endl;

}

};

class Derived : public Base {

public:

void display() override {

cout << "Derived class display" << endl;

}

};

int main() {

Base *basePtr = new Derived();

basePtr->display(); // Calls the derived class's display

return 0;

}

4. Develop a program to declare class book containing data members as title,
authorname, publication,price.Accept and display the information for one
object using pointer to that objects

6 S-24

#include<iostream>

using namespace std;

class book

{

RSCOEP Department of Computer Engineering Prof S.U.Puri 133

char title[30];

char authorname[30];

char publication[30];

int price;

public:

void accept()

{

cout<<"\n Enter the title of Book:";

cin>>title;

cout<<"\n Enter the Book Author Name:";

cin>>authorname;

cout<<"\n Enter the Publication details:";

cin>>publication;

cout<<"\n Enter the Price of Book:";

cin>>price;

}

void display()

{

cout<<"\n Title of the Book:"<<title;

cout<<"\n The Name of Author is:"<<authorname;

cout<<"\n The Publication company is:"<<publication;

cout<<"\n The Price of the Book is:"<<price;

}

};

int main()

{

book b,*p;

p=&b;

p->accept();

p->display();

return 0;

}

5. Write a C++ program to overload “+” operator so that it will perform
concatenation of two strings.(Use class getdata function to accept two strings)

6 S-24

RSCOEP Department of Computer Engineering Prof S.U.Puri 134

#include<iostream>

#include<string.h>

using namespace std;

class String

{

char str[20]; //member variable for string input

public:

void input() //member function

{

cout<<"Enter String: ";

cin>>str;

}

void display() //member function for output

{

cout<<"Concatenation of two Strings: "<<str;

}

String operator+(String s) //operator overloading

{

String obj;

strcat(str,s.str);

strcpy(obj.str,str);

return obj;

}

};

int main()

{

String str1,str2,str3; //creating three object

str1.input();

str2.input();

str3=str1+str2;

str3.display(); //displaying

}

OR

RSCOEP Department of Computer Engineering Prof S.U.Puri 135

#include<iostream>

#include<string.h>

using namespace std;

class string_concat

{

char s1[30];

char s2[30];

public:

void getdata()

{

cout<<"\n Enter the First String :";

cin>>s1;

cout<<"\n Enter the Second String :";

cin>>s2;

}

void operator+()

{

cout<<"\n The concatenation of two String

is:"<<strcat(s1,s2);

}

};

int main()

{

string_concat s;

s.getdata();

+s;

}

6. Explain reference and deference operators with respect to pointers. 2 W-23

Reference and Dereference Operators with Pointers

In programming, particularly in languages like C and C++, pointers are used to
indirectly access memory locations. The reference and dereference operators are
essential for working with pointers.

RSCOEP Department of Computer Engineering Prof S.U.Puri 136

Reference Operator (&)

 Purpose: Gets the address of a variable.
 Syntax: &variable_name
 Explanation:When you apply the reference operator to a variable, it

returns the memory address where that variable is stored. This address is
then typically assigned to a pointer.

Example:

C++

int x = 10;int *ptr = &x; // ptr now holds the address of x

Dereference Operator (*)

 Purpose: Accesses the value stored at the memory location pointed to by a
pointer.

 Syntax: *pointer_name
 Explanation:When you apply the dereference operator to a pointer, it

gives you the value stored at the memory address that the pointer points to.

Example:

C++

int x = 10;int *ptr = &x;int y = *ptr; // y now holds the value of x, which is 10
In this example, *ptr dereferences the pointer ptr to get the value at the address it
points to (which is the value of x).

7. Differentiate between compile time polymorphism and run time
polymorphism. (Any four points)

4 W-23

Differentiate between compile time and run time polymorphism. 4 S-22

Compile Time Polymorphism (Static Polymorphism)

 Determined at compile time: The compiler decides which method to call
based on the static type of the object.

 Achieved through method overloading:Multiple methods with the same
name but different parameter lists.

 Example: Overloaded add methods in a class to handle different data types
(int, double, etc.).

 Less flexible: The decision is made before the program runs.

Run Time Polymorphism (Dynamic Polymorphism)

RSCOEP Department of Computer Engineering Prof S.U.Puri 137

 Determined at runtime: The method to be called is decided based on the
actual object type at runtime.

 Achieved through method overriding: A subclass provides a specific
implementation of a method inherited from a superclass.

 Example: A Shape class has a draw() method, and subclasses like Circle
and Rectangle override it with their specific implementations.

 More flexible: Allows for dynamic behavior based on object types.

8. Describe ‘this’ pointer in C++ with an example 6 W-23

Illustrate this pointer with example. 4 S-23

The this Pointer in C++

The this pointer is a special constant pointer available within the non-static
member functions of a class. It points to the object whose member function is
being called.

How it works:

When an object calls a non-static member function, the compiler implicitly passes
a hidden argument to the function: a pointer to that object itself.

This pointer is stored in the this pointer within the function.

You can use this to access the object's members from within its own member
functions.

#include <iostream>

class MyClass {

public:

int x;

void setX(int value) {

x = value; // Equivalent to (*this).x = value;

}

void print() {

std::cout << "x: " << x << std::endl;

}

};

RSCOEP Department of Computer Engineering Prof S.U.Puri 138

int main() {

MyClass obj;

obj.setX(10);

obj.print();

return 0;

}

Explanation:

In the setX function, this->x is equivalent to x. However, using this explicitly can
be helpful when there's a name conflict between a member variable and a local
variable.

The print function demonstrates how to access and print the object's data member
using this.

this is a constant pointer, meaning its value cannot be changed.

this is only available within non-static member functions.

It can be used to access the object's members and return a reference to the object
itself.

It's often used in constructors, operator overloading, and when there's a name
conflict between a member and a local variable.

9. Explain the rules of virtual function. 6 W-23

 Must be a member of a class: Virtual functions cannot exist outside a class.

 Cannot be static: Static members belong to the class, not objects, so they can't
be overridden.

 Accessed through object pointers: To achieve runtime polymorphism, virtual
functions must be called through a base class pointer pointing to a derived
class object.

 Can be a friend of another class: This doesn't affect their virtual behavior.

 Must be defined in the base class: Even if not used, a virtual function must
have a definition in the base class.

 Prototype must match: The prototype (return type, name, and parameters) of a
virtual function must be identical in both base and derived classes.

 Overriding is optional: Derived classes can choose to override or not. If not

RSCOEP Department of Computer Engineering Prof S.U.Puri 139

overridden, the base class version is called.

 Virtual destructors: Destructors can be virtual to ensure proper cleanup of
derived class objects.

 No virtual constructors: Constructors are called during object creation, so
runtime polymorphism doesn't apply.

 Pointer arithmetic: Incrementing or decrementing a base class pointer pointing
to a derived class object is based on the base class size, not the derived class
size.

#include <iostream>

class Base {

public:

virtual void display() {

std::cout << "Base class display" << std::endl;

}

};

class Derived : public Base {

public:

void display() override {

std::cout << "Derived class display" << std::endl;

}

};

int main() {

Base *basePtr = new Derived();

basePtr->display(); // Calls Derived's display() due to virtual function

delete basePtr;

return 0;

}

10. Write a program to declare a class ‘item’ containing data members as
‘item_name’, ‘code’, ‘price’. Accept and display the information for one

6 W-23

RSCOEP Department of Computer Engineering Prof S.U.Puri 140

object using pointer to that object.

#include <iostream>

#include <string>

using namespace std;

class Item {

public:

string item_name;

int code;

double price;

};

int main() {

Item item;

Item *ptr = &item;

cout << "Enter item name: ";

getline(cin, ptr->item_name);

cout << "Enter item code: ";

cin >> ptr->code;

cout << "Enter item price: ";

cin >> ptr->price;

cout << "\nItem Information:\n";

cout << "Item Name: " << ptr->item_name << endl;

cout << "Item Code: " << ptr->code << endl;

cout << "Item Price: " << ptr->price << endl;

return 0;

}

11. Define polymorphism with it’s types. 2 S-23

Polymorphism is a core concept in object-oriented programming (OOP) that allows

RSCOEP Department of Computer Engineering Prof S.U.Puri 141

objects of different types to be treated as if they were of the same type. It
essentially means "many forms," reflecting the ability of an object to take on
multiple forms.

Types of Polymorphism

1. Compile-time Polymorphism (Static Polymorphism)

2. Runtime Polymorphism (Dynamic Polymorphism)

12. State the advantages of pointer 4 S-23

Efficiency

Direct memory access: Pointers provide direct access to memory locations, which
can lead to faster program execution compared to accessing data through variables.

Efficient data manipulation: Operations on data through pointers can be performed
more efficiently in certain cases.

Flexibility

Dynamic memory allocation: Pointers are essential for allocating memory
dynamically at runtime, allowing for flexible memory management based on
program needs.

Data structures: Pointers are fundamental for implementing complex data
structures like linked lists, trees, and graphs.

Function parameters: Pointers can be used to pass arguments by reference,
allowing functions to modify the original data.

Low-level programming

Memory management: Pointers provide a way to interact with the underlying
hardware and memory system, enabling low-level programming tasks.

System programming: Pointers are crucial for operating system development and
other system-level programming.

13. Write C++ program to overload binary operator ‘+’ to concatenate two
strings.

6 S-23

#include <iostream>

#include <string>

using namespace std;

class String {

RSCOEP Department of Computer Engineering Prof S.U.Puri 142

public:

string str;

String(const string& s) : str(s) {}

String operator+(const String& other) {

return String(str + other.str);

}

void display() {

cout << str << endl;

}

};

int main() {

String s1("Hello");

String s2(" World");

String s3 = s1 + s2;

s3.display();

return 0;

}

14. Explain concept of pointer with example. 2 W-22

Pointers in C++

A pointer in C++ is a variable that stores the memory address of another variable.
It acts like a locator or indicator pointing to the location where data is stored.

int x = 10; int *ptr = &x;

15. Differentiate between compile time polymorphism and Runtime
polymorphism.

4 W-22

RSCOEP Department of Computer Engineering Prof S.U.Puri 143

Compile-Time Polymorphism Run-Time Polymorphism

It is also called Static Polymorphism. It is also known as Dynamic
Polymorphism.

In compile-time polymorphism, the
compiler determines which function
or operation to call based on the
number, types, and order of

arguments.

In run-time polymorphism, the
decision of which function to call is
determined at runtime based on the
actual object type rather than the

reference or pointer type.

Function calls are statically binded. Function calls are dynamically
binded.

Compile-time Polymorphism can be
exhibited by:

1. Function Overloading
2. Operator Overloading

Run-time Polymorphism can be
exhibited by Function Overriding.

Faster execution rate. Comparatively slower execution rate.

Inheritance in not involved. Involves inheritance.

16. Develop a c++ program to perform arithmetic operation using pointer. 4 W-22
#include <iostream>

using namespace std;

int main() {

int num1 = 10, num2 = 20;

int *ptr1 = &num1, *ptr2 = &num2;

// Addition

int sum = *ptr1 + *ptr2;

cout << "Sum: " << sum << endl;

// Subtraction

int difference = *ptr1 - *ptr2;

cout << "Difference: " << difference << endl;

// Multiplication

int product = *ptr1 * *ptr2;

RSCOEP Department of Computer Engineering Prof S.U.Puri 144

cout << "Product: " << product << endl;

// Division

if (*ptr2 != 0) {

double quotient = static_cast<double>(*ptr1) / *ptr2;

cout << "Quotient: " << quotient << endl;

} else {

cout << "Division by zero error!" << endl;

}

return 0;

}

17. Explain rules of operator overloading and overload ‘+’ operator to
concatenate two string.

6 W-22

Operator Overloading

Operator overloading is a feature in C++ that allows you to redefine the behavior

of built-in operators for user-defined data types. This enhances code readability

and expressiveness.

Rules of Operator Overloading

 Only built-in operators can be overloaded.

 The arity of the operator cannot be changed. For instance, you cannot make a

unary operator binary or vice versa.

 Operator precedence and associativity cannot be changed.

 Overloaded operators follow the same rules of precedence and associativity as

their built-in counterparts.

 Overloaded operators cannot be new operators. They must have existing

definitions.

 The return type of an overloaded operator should be intuitive. For example,

overloading + for string concatenation should return a string.

Overloading the + Operator for String Concatenation

#include <iostream>

#include <string>

using namespace std;

class String {

public:

string str;

RSCOEP Department of Computer Engineering Prof S.U.Puri 145

String(const string& s) : str(s) {}

String operator+(const String& other) {

return String(str + other.str);

}

void display() {

cout << str << endl;

}

};

int main() {

String s1("Hello");

String s2(" World");

String s3 = s1 + s2;

s3.display();

return 0;

}

18. Develop c++ program to implement inheritance shown in fig. 6 W-22

#include <iostream>

using namespace std;

class HOD {

public:

virtual void display() {

cout << "HOD" << endl;

}

};

class Faculty : public HOD {

RSCOEP Department of Computer Engineering Prof S.U.Puri 146

public:

void display() override {

cout << "Faculty" << endl;

}

};

class LabIncharge : public HOD {

public:

virtual void display() {

cout << "Lab Incharge" << endl;

}

};

class Technical : public LabIncharge {

public:

void display() override {

cout << "Technical" << endl;

}

};

class NonTechnical : public LabIncharge {

public:

void display() override {

cout << "Non-Technical" << endl;

}

};

class Student : public HOD {

public:

void display() override {

cout << "Student" << endl;

}

};

int main() {

HOD *ptr;

ptr = new Faculty();

ptr->display();

RSCOEP Department of Computer Engineering Prof S.U.Puri 147

ptr = new LabIncharge();

ptr->display();

ptr = new Technical();

ptr->display();

ptr = new NonTechnical();

ptr->display();

ptr = new Student();

ptr->display();

return 0;

}

19. State the need of virtual function in C++. 2 S-22

Virtual functions are essential for achieving runtime polymorphism in C++. This

means that the decision about which function to call is made at runtime based on

the actual type of the object, rather than the declared type of the pointer or

reference.

Here's why virtual functions are crucial:

Runtime polymorphism: Allows for different behaviors based on the object's type

at runtime.

Base class pointers: Enables using a base class pointer to refer to objects of derived

classes and calling appropriate functions.

Overriding functionality: Provides a mechanism to redefine behavior in derived

classes without changing the base class interface.

Generic programming: Facilitates writing generic code that can work with different

derived classes.

Design patterns: Supports design patterns like Template Method, Strategy, and

Observer.

20. Write a C++ program to overload add function to add two integer numbers
and two float numbers.

4 S-22

#include <iostream>

RSCOEP Department of Computer Engineering Prof S.U.Puri 148

using namespace std;

int add(int a, int b) {

return a + b;

}

float add(float a, float b) {

return a + b;

}

int main() {

int num1 = 10, num2 = 20;

float f1 = 3.14, f2 = 2.71;

cout << "Sum of integers: " << add(num1, num2) << endl;

cout << "Sum of floats: " << add(f1, f2) << endl;

return 0;

}

21. i) Define pointer operator and address operator with example.

ii) Write a C++ program to declare a class train with members as train no and
name. Accept and display data for one object of train. Use pointer to object to
call functions of class

6 S-22

i) Define pointer operator and address operator with example.

Pointer Operator (*)

The pointer operator, denoted by *, is used to dereference a pointer. This means it
accesses the value stored at the memory location pointed to by the pointer

#include <iostream>

using namespace std;

int main() {

int x = 10;

int *ptr = &x; // ptr points to the address of x

cout << *ptr; // Output: 10 (value at the address stored in ptr)

RSCOEP Department of Computer Engineering Prof S.U.Puri 149

return 0;

}

Address Operator (&)

The address operator, denoted by &, returns the memory address of a variable.

#include <iostream>

using namespace std;

int main() {

int x = 10;

int *ptr = &x; // ptr stores the address of x using the address operator

cout << ptr; // Output: memory address of x

return 0; }

ii) Write a C++ program to declare a class train with members as train no and
name. Accept and display data for one object of train. Use pointer to object to
call functions of class

#include <iostream>

#include <string>

using namespace std;

class Train {

public:

int train_no;

string name;

void acceptData() {

cout << "Enter train number: ";

cin >> train_no;

cin.ignore(); // Ignore newline character

cout << "Enter train name: ";

getline(cin, name);

RSCOEP Department of Computer Engineering Prof S.U.Puri 150

}

void displayData() {

cout << "Train Number: " << train_no << endl;

cout << "Train Name: " << name << endl;

}

};

int main() {

Train train;

Train *ptr = &train;

ptr->acceptData();

ptr->displayData();

return 0;

}

22. Write a C++ program to overload “+” operator so that it will perform
concatenation of two strings. (Use class get data function to accept two strings)

6 S-22

#include <iostream>

#include <string>

using namespace std;

class String {

public:

string str;

void getData() {

cout << "Enter a string: ";

getline(cin, str);

}

String operator+(const String& other) {

String temp;

RSCOEP Department of Computer Engineering Prof S.U.Puri 151

temp.str = str + other.str;

return temp;

}

void display() {

cout << str << endl;

}

};

int main() {

String s1, s2, s3;

s1.getData();

s2.getData();

s3 = s1 + s2;

s3.display();

return 0;

}

23. Describe ‘this’ pointer with an example. 4 W-19

‘this’ pointer:

C++ uses a unique keyword called „this‟ to represent an object that invokes a
member function. This unique pointer is automatically passed to a member
function when it is invoked. „this‟ is a pointer that always point to the object for
which the member function was called.

For example, the function call A.max () will set the pointer „this‟ to

the address of the object A. Then suppose we call B.max (), the pointer „this‟ will
store address of object B.

Example:

#include<iostream.h>

class sample

{

RSCOEP Department of Computer Engineering Prof S.U.Puri 152

int a;

public:

void setdata(int x)

{

this ->a=x;

}

void putdata()

{

cout<<this ->a;

}

};

void main()

{

sample s;

s.setdata(100);

s.putdata();

}

In the above example, this pointer is used to represent object s when

setdata () and putdata () functions are called.

24. Write a program to declare a class ‘book’ containing data members as ‘title’,
‘author-name’, ‘publication’, ‘price’. Accept and display the information for
one object using pointer to that object.

6 W-19

#include<iostream.h>

#include<conio.h>

class book

{

char author_name[20];

RSCOEP Department of Computer Engineering Prof S.U.Puri 153

char title[20];

char publication[20];

float price;

public:

void Accept();

void Display();

};

void book::Accept()

{

cout<<"\n Enter book‟s title, author_name, publication and price \n:";

cin>> title >>author_name>> publication >> price;

}

void student::Display()

{

cout<<title <<”\t”<<author_name<<”\t”<<publication <<”\t”<<

price<<”\n”<<;

}

void main()

{

book b, *p;

clrscr();

p=&b;

p->Accept();

cout<<”title \t author_name \t publication \t price\n”;

p-> Display();

getch();

RSCOEP Department of Computer Engineering Prof S.U.Puri 154

}

25. Write a program to overload the ‘—’ unary operator to negate the values. 6 W-19

#include<iostream.h>

#include<conio.h>

#include<string.h>

class Number

{

int x,y;

public:

Number (int a, int b)

{

a =x;

b =y;

}

void display()

{

cout<<"value of x=”<<x<<”\n Value of y= ”<<y;

}

void operator - ()

{

x = - x;

y = - y;

}

};

void main ()

{

RSCOEP Department of Computer Engineering Prof S.U.Puri 155

Number N1(5,6);

clrscr ();

N1. display ();

-N1;

cout<<"\n After negation:";

N1. display ();

getch ();

}

26. Give meaning of following statements:

int * ptr, a = 5; ptr = & a ;

cout << * ptr ;

cout << (* ptr) + 1;

2 S-19

int *ptr, a = 5;

Declare pointer variable ptr and variable a with initial value 5.

ptr = & a;

initialize pointer variable with address of variable a (store address of

variable a in ptr)

cout<< * ptr;

Displays value of a i.e. value at address stored inside ptr. It displays

value 5.

cout<< (* ptr) + 1;

Displays value by adding 1 to the value at address stored inside ptr. It

displays value 6

27. (i) Write any three rules of operator overloading.

(ii) Write a program in C++ to overload unary ‘_’ operator to negate values
of data members of class.

6 S-19

(i) Write any three rules of operator overloading.

RSCOEP Department of Computer Engineering Prof S.U.Puri 156

1. Only existing operators can be overloaded. New operators cannot

be created.

2. The overloaded operator must have at least one operand that is of

user defined data type.

3. We can’t change the basic meaning of an operator. That is to say, we can’t
redefine the plus(+) operator to subtract one value from other.

4. Overloaded operators follow the syntax rules of the original operators. They
can’t be overridden.

5. There are some operators that can’t be overloaded.

6. We can’t use friend functions to overload certain operators. However, member
function scan be used to overload them.

7. Unary operators overloaded by means of member function take no

explicit arguments and return no explicit values, but, those overloaded by means
of the friend function, take one reference argument (the object of the relevant
class).

8. Binary operators overloaded through a member function, take one

explicit argument and those which are overloaded through a friend

function take two explicit arguments.

9. When using binary operators overloaded through a member function, the left
hand operand must be an object of the relevant class.

10. Binary arithmetic operators such as +,-,* and / must explicitly

Return a value. They must not attempt to change their own arguments.

(ii) Write a program in C++ to overload unary ‘_’ operator to negate values of
data members of class.

(Note: Any other correct logic shall be considered)

#include<iostream.h>

#include<conio.h>

#include<string.h>

RSCOEP Department of Computer Engineering Prof S.U.Puri 157

class Number

{

int x, y;

public:

Number (int a,int b)

{

a =x;

b =y;

}

void display()

{

cout<<"value of x=”<<x<<”\nValue of y= ”<<y;

}

void operator - ()

{

x = - x;

y = - y;

}

};

void main()

{

Number N1(5,6);

clrscr();

N1.display();

-N1;

cout<<"\n After negation:";

RSCOEP Department of Computer Engineering Prof S.U.Puri 158

N1. display ();

getch();

}

28. With suitable example, describe effect of ++ and – – operators used with
pointer in pointer arithmetic.

4 W-18

++ Operator: - It is referred as increment operator that increments the

value of variable. If ++ operator is used with pointer variable, then

pointer variable points to next memory address that means pointer

increment with respect to size of the data type used to declare pointer

variable.

Example:-

int a[5]={10,20,30,40,50},*ptr;

ptr=a[0];

for(i=0;i<5;i++)

{

cout<<*ptr;

ptr++;

}

In the above example, ptr points to memory location of a[0].

Increment statement ptr++ increments ptr by memory size of int i.e 2

bytes and ptr points to a[1].

- - Operator: - It is referred as decrement operator that decrements

the value of variable. If - - operator is used with pointer variable, then

pointer variable points to previous memory address that means

pointer decrement with respect to size of the data type used to declare

pointer variable.

29. Write a C++ program to swap two integer numbers and swap two float 4 W-18

RSCOEP Department of Computer Engineering Prof S.U.Puri 159

numbers using function overloading. (Hint : overload swap function)

#include<iostream.h>

#include<conio.h>

void swap(int a,int b)

{

int temp;

temp=a;

a=b;

b=temp;

cout<<"\nInteger values after swapping are:"<<a<<" "<<b;

}

void swap(float x,float y)

{

float temp1=x;

x=y;

y=temp1;

cout<<"\nFloat values after swapping are:"<<x<<" "<<y;

}

void main()

{

clrscr();

swap(10,20);

swap(10.15f,20.25f);

getch();

}

30. Write a C++ program to overload binary operator ‘+’ to concatenate two
strings.

6 W-18

RSCOEP Department of Computer Engineering Prof S.U.Puri 160

#include<iostream.h>

#include<conio.h>

#include<string.h>

class opov

{

char str1[10];

public:

void getdata()

{

cout<<"\nEnter a strings";

cin>>str1;

}

void operator +(opov o)

{

cout<<strcat(str1,o.str1);

}

};

void main()

{

opov o1,o2;

clrscr();

o1.getdata();

o2.getdata();

o1+o2;

getch();

}

	Unit 4:Pointers and Polymorphism in C++
	Reference and Dereference Operators with Pointers
	Reference Operator (&)
	Dereference Operator (*)
	Compile Time Polymorphism (Static Polymorphism)
	Run Time Polymorphism (Dynamic Polymorphism)

