
RSCOEP Department of Computer Engineering Prof.S.U.Puri 75

JSPM’s
RAJARSHI SHAHU COLLEGE OF ENGINEERING,

POLYTECHNIC
Department of Computer Engineering

Academic Year: 2024-25

Subject – OOP Using C++ (313304) Question Bank – Unit -3

Unit 3:Extending classes using Inheritance
CO3 - Implement Inheritance in C++

Sr.No Questions Mar
ks

Year

1. List different types of inheritance 2 S-24

Types of inheritance:
1.Single inheritance
2. Multiple inheritance
3. Multilevel inheritance
4. Hierarchical inheritance
5. Hybrid inheritance

2. What is multilevel inheritance? Develop a C++ program for multilevel
inheritance.

4 S-24

Multilevel Inheritance:
The inheritance in which a class can be derived from another derived class is
known as Multilevel Inheritance. Suppose there are three classes A, B, and C. A is
the base class. B is the derived class of A. and C is the class that is derived from
class B.

Fig: Multilevel Inheritance

Marks - 16

RSCOEP Department of Computer Engineering Prof.S.U.Puri 76

Example:
#include<iostream>
using namespace std;
class electronicDevice
{
public:
electronicDevice()
{
cout << "I am an electronic device.\n\n";
}
};
class Computer: public electronicDevice
{
public:
Computer()
{
cout << "I am a computer.\n\n";
}
};
class Linux_based : public Computer
{
public:
Linux_based()
{
cout << "I run on Linux.\n\n";;
}
};
int main()
{
Linux_based obj;
}

3. Describe the concept of virtual base class with suitable example. 4 S-24

Explain virtual base class with an example. 6 W-23

Illustrate the concept of virtual base class with suitable example. 4 S-23

Develop a c++ program to implement virtual Base class. 6 W-22

Describe the concept of virtual base class with example. 4 S-22

Explain virtual base class with suitable example. 2 W-19

Describe the concept of virtual base class with suitable example.

RSCOEP Department of Computer Engineering Prof.S.U.Puri 77

Virtual Base Class:
An ancestor class is declared as virtual base class which is used to avoid
duplication of inherited members inside child class due to multiple path of
inheritance.

Fig.:Virtual Base Class (Multipath inheritance)

Consider a hybrid inheritance as shown in the above diagram. The child class has
two direct base classes, Parent1 and Parent2 which themselves have a common
base class as Grandparent. The child inherits the members of Grandparent via two
separate paths. All the public and protected members of Grandparent are inherited
into Child twice, first via Parent1 and again via Parent2. This leads to duplicate
sets of the inherited members of Grandparent inside Child class. The duplication of
inherited members can be avoided by making the common base class as virtual
base class while declaring the direct or intermediate base classes as shown below.

class Grandparent
{
};
class Parent1: virtual public Grandparent
{
};
class Parent2: public virtual Grandparent
{
};
class Child: public Parent1, public Parent2
{
};

Example:
#include<iostream>
using namespace std;
class student
{
int rno;
public:
void getnumber()
{
cout<<"Enter Roll No:";
cin>>rno;

RSCOEP Department of Computer Engineering Prof.S.U.Puri 78

}
void putnumber()
{
cout<<"\n\n\t Roll No:"<<rno<<"\n";
}
};
class test: virtual public student
{
public:
int part1,part2;
void getmarks()
{
cout<<"Enter Marks\n";
cout<<"Part1:";
cin>>part1; cout<<"Part2:";
cin>>part2;
}
void putmarks()
{
cout<<"\t Marks Obtained\n";
cout<<"\n\t Part1:"<<part1;
cout<<"\n\tPart2:"<<part2;
}
};
class sports: public virtual student
{
public:
int score;
void getscore()
{
cout<<"Enter Sports Score:";
cin>>score;
}
void putscore()
{
cout<<"\n\t Sports Score is:"<<score;
}
};
class result: public test, public sports
{
int total;
public:
void display()
{
total=part1+part2+score;
putnumber();
putmarks();

RSCOEP Department of Computer Engineering Prof.S.U.Puri 79

putscore();
cout<<"\n\t Total Score:"<<total;
}
};
int main()
{
result obj;
obj.getnumber();
obj.getmarks();
obj.getscore();
obj.display();
}

4. Describe a C++ program to declare a class college with name and code.Derive
new class a student with member as name.Accept and display details of one
students along with college data

4 S-24

#include<iostream>
using namespace std;
class college
{
char name[10];
int code;
public:
void accept_college()
{
cout<<"Enter College Name:";
cin>>name;
cout<<"Enter Code:";
cin>>code;
}
void display_college()
{
cout<<endl<<"College Name:"<<name;
cout<<endl<<"College Code:"<<code;
}
};
class student:public college
{
char sname[10];
public:
void accept_student()
{
cout<<"Enter student Name:";
cin>>sname;
}
void display_student()
{
cout<<endl<<"Student Name:"<<sname;

RSCOEP Department of Computer Engineering Prof.S.U.Puri 80

}
};
int main()
{
student s;
s.accept_college();
s.accept_student();
s.display_college();
s.display_student();
}

5. Describe all visibility modes and effects with example. 4 S-24

State different types of visibility mode in inheritance. 2 S-23

Describe all visibility modes and effects with example. 4 W-22

Describe visibility modes and their effects used in inheritance. 4 S-22

State and explain the visibility modes used in inheritance. 6 W-19

State and describe visibility modes and its effects used in inheritance. 4 S-19

Visibility modes:

private

protected

public

Private:

o When a base class is privately inherited by a derived class, „public members‟
and „protected members‟ of the base class become „private members‟ of the
derived class.

o Therefore, the public and protected members of the base class can only be
accessed by the member functions of derived class but, cannot be accessed by the
objects of the derived class.

RSCOEP Department of Computer Engineering Prof.S.U.Puri 81

Syntax:

class derived: private base

{

//Members of derived class;

};

Public:

o When a base class is publicly inherited by a derived class then protected
members‟ of base class becomes „protected members‟ and ‟public members‟ of
the base class become public members‟ of the derived class.

o Therefore the public members of the base class can be accessed by both the
member functions of derived class as well as the objects of the derived class.

Syntax:

class derived: public base

{

//Members of derived class;

};

Protected:

o When a base class is protectedly inherited by a derived class, „public and
protected members‟ of the base class become protected members‟ of the derived
class.

o Therefore the public and protected members of the base class can be accessed by
the member functions of derived class as well as the member functions of
immediate derived class of it but they cannot be accessed by the objects of derived
class

Syntax:

class derived: protected base

{

//Members of derived class;

};

RSCOEP Department of Computer Engineering Prof.S.U.Puri 82

6. Write a program to implement inheritance shown in fig. 6 S-24

#include <iostream>
using namespace std;
// Base class Teacher
class Teacher {
public:
string Name;
int emp_id;

void setTeacherDetails()
{
cout<<"Enter Employee Name:";
cin>>Name;
cout<<"Enter Employee ID:";
cin>>emp_id;
}

void displayTeacherDetails()
cout << "Employee Name: " << Name << endl;
cout << "Employee ID: " << emp_id << endl;
}
};
// Base class Student
class Student {
public:
string S_Name;
int Roll_No;

void setStudentDetails()
{
cout<<"Enter Student Name:";
cin>>S_Name;
cout<<"Enter Roll Number ID:";
cin>>Roll_No;
}
void displayStudentDetails() {
cout << "Student Name: " << S_Name << endl;
cout << "Roll Number: " << Roll_No << endl;
}

RSCOEP Department of Computer Engineering Prof.S.U.Puri 83

};
// Derived class Info inheriting from both Teacher and Student
class Info : public Teacher, public Student {
public:
void displayInfo() {
displayTeacherDetails();
displayStudentDetails();
}
};
int main() {
Info info;
info.setTeacherDetails();
info.setStudentDetails();
cout<<endl;
info.displayInfo();
}
OR
#include <iostream>
using namespace std;
// Base class Teacher
class Teacher {
public:
string Name;
int emp_id;

void setTeacherDetails(string name, int id) {
Name = name;
emp_id = id;
}

void displayTeacherDetails() {
cout << "Teacher Name: " << Name << endl;
cout << "Employee ID: " << emp_id << endl;
}
};
// Base class Student
class Student {
public:
string S_Name;
int Roll_No;

void setStudentDetails(string name, int rollNo) {
S_Name = name;
Roll_No = rollNo;
}

void displayStudentDetails() {
cout << "Student Name: " << S_Name << endl;
cout << "Roll Number: " << Roll_No << endl;
}

RSCOEP Department of Computer Engineering Prof.S.U.Puri 84

};
// Derived class Info inheriting from both Teacher and Student
class Info : public Teacher, public Student {
public:
void displayInfo() {
displayTeacherDetails();
displayStudentDetails();
}
};
int main() {
Info info;

info.setTeacherDetails("Alice", 123);
info.setStudentDetails("Bob", 456);

info.displayInfo();
}

7. Explain the access specifier in C++. 4 W-23

1. Private

2. Public

3. protected

8. What is inheritance? Give different types of inheritance. 4 W-23

What is inheritance? Give different types of inheritance. 4 W-19

Inheritance is a fundamental concept in object-oriented programming (OOP) that
allows a new class (derived class or subclass) to inherit the properties and
behaviors (methods) of an existing class (base class or parent class). This promotes
code reusability and hierarchical relationships between classes.

Types of Inheritance

There are primarily five types of inheritance:

Single Inheritance:

A derived class inherits from only one base class.

It's the simplest form of inheritance.

Example: A Car class inheriting from a Vehicle class.

Multiple Inheritance:

A derived class inherits from multiple base classes.

This type of inheritance can lead to the "diamond problem" (ambiguity when a

RSCOEP Department of Computer Engineering Prof.S.U.Puri 85

class inherits from two base classes with the same member).

Example: A HybridCar class inheriting from both ElectricCar and PetrolCar
classes.

Multilevel Inheritance:

A derived class inherits from a base class, which itself is derived from another base
class.It forms a chain of inheritance.

Example: SportsCar inheriting from Car, which inherits from Vehicle.

Hierarchical Inheritance:

Multiple derived classes inherit from a single base class.It forms a tree-like
structure.

Example: Sedan, SUV, and Hatchback inheriting from Car.

Hybrid Inheritance:

A combination of two or more types of inheritance.It's complex and often avoided
due to potential ambiguities.

Example: A class inheriting from a base class and also from a class that itself uses
multiple inheritance.

9. Explain multilevel inheritance with an example 4 W-23

Multilevel inheritance is a type of inheritance where a derived class inherits
properties from another derived class, which in turn inherits from a base class.

Example:

Vehicle is the base class with properties like number of wheels, color, etc.

Car is a derived class of Vehicle, inheriting its properties and adding specific car
features like model, engine type, etc.

Sedan is a derived class of Car, inheriting properties from both Vehicle

and Car, and adding specific sedan features like number of doors, boot space, etc.

#include <iostream>

using namespace std;

class Vehicle {

public:

RSCOEP Department of Computer Engineering Prof.S.U.Puri 86

int num_wheels;

string color;

void displayVehicleDetails() {

cout << "Number of wheels: " << num_wheels << endl;

cout << "Color: " << color << endl;

}

};

class Car : public Vehicle {

public:

string model;

string engine_type;

void displayCarDetails() {

cout << "Model: " << model << endl;

cout << "Engine type: " << engine_type << endl;

}

};

class Sedan : public Car {

public:

int num_doors;

int boot_space;

void displaySedanDetails() {

cout << "Number of doors: " << num_doors << endl;

cout << "Boot space: " << boot_space << endl;

}

};

int main() {

RSCOEP Department of Computer Engineering Prof.S.U.Puri 87

Sedan sedan;

sedan.num_wheels = 4;

sedan.color = "Red";

sedan.model = "Corolla";

sedan.engine_type = "Petrol";

sedan.num_doors = 4;

sedan.boot_space = 500;

sedan.displayVehicleDetails();

sedan.displayCarDetails();

sedan.displaySedanDetails();

return 0;

}

10. Write a C++ program to implement multiple inheritance as shown in Figure
No. 1. Accept and display data of test marks and sport’s marks using object of
class ‘result’

6 W-23

#include <iostream>

using namespace std;

class Test {

public:

RSCOEP Department of Computer Engineering Prof.S.U.Puri 88

int marks1, marks2;

void getTestMarks() {

cout << "Enter marks1: ";

cin >> marks1;

cout << "Enter marks2: ";

cin >> marks2;

}

void displayTestMarks() {

cout << "Test marks1: " << marks1 << endl;

cout << "Test marks2: " << marks2 << endl;

}

};

class Sports {

public:

int sportMarks;

void getSportMarks() {

cout << "Enter sport marks: ";

cin >> sportMarks;

}

void displaySportMarks() {

cout << "Sport marks: " << sportMarks << endl;

}

};

class Result : public Test, public Sports {

public:

int total;

RSCOEP Department of Computer Engineering Prof.S.U.Puri 89

void calculateTotal() {

total = marks1 + marks2 + sportMarks;

}

void displayResult() {

displayTestMarks();

displaySportMarks();

cout << "Total marks: " << total << endl;

}

};

int main() {

Result result;

result.getTestMarks();

result.getSportMarks();

result.calculateTotal();

result.displayResult();

return 0;

}

11. Write a program on single inheritance. 4 S-23

#include <iostream>

using namespace std;

class Animal {

public:

void eat() {

cout << "Animal eats." << endl;

}

};

RSCOEP Department of Computer Engineering Prof.S.U.Puri 90

class Dog : public Animal {

public:

void bark() {

cout << "Dog barks." << endl;

}

};

int main() {

Dog d;

d.eat(); // Inherited from Animal

d.bark();

return 0;

}

12. Write a program on hybrid inheritance. 6 S-23

#include <iostream>

using namespace std;

class A {

public:

void displayA() {

cout << "Class A" << endl;

}

};

class B {

public:

void displayB() {

cout << "Class B" << endl;

}

RSCOEP Department of Computer Engineering Prof.S.U.Puri 91

};

class C : public A {

public:

void displayC() {

cout << "Class C" << endl;

}

};

class D : public B, public C {

public:

void displayD() {

cout << "Class D" << endl;

}

};

int main() {

D obj;

obj.displayA();

obj.displayB();

obj.displayC();

obj.displayD();

return 0;

}

13. Explain abstract class with suitable example. 6 S-23

An abstract class is a class that cannot be instantiated directly. It serves as a
blueprint for other classes. Abstract classes contain at least one abstract method,
which is a method declared without an implementation.

characteristics of abstract classes:

Cannot be instantiated.

RSCOEP Department of Computer Engineering Prof.S.U.Puri 92

Can contain both abstract and concrete methods.

Used as a base class for other classes.

Provides a common interface for derived classes.

#include <iostream>

using namespace std;

class Shape {

public:

virtual double getArea() = 0; // Pure virtual function

};

class Circle : public Shape {

public:

double radius;

Circle(double r) : radius(r) {}

double getArea() override {

return 3.14159 * radius * radius;

}

};

class Rectangle : public Shape {

public:

double width, height;

Rectangle(double w, double h) : width(w), height(h) {}

double getArea() override {

return width * height;

}

};

int main() {

RSCOEP Department of Computer Engineering Prof.S.U.Puri 93

// Shape s; // Error: Cannot create an object of an abstract class

Circle c(5);

Rectangle r(4, 3);

cout << "Circle area: " << c.getArea() << endl;

cout << "Rectangle area: " << r.getArea() << endl;

return 0;

}

14. Develop a c++ program for multilevel inheritance. 4 W-22
#include <iostream>
using namespace std;
class Grandfather {
public:
void displayGrandfather() {
cout << "Grandfather" << endl;

}
};
class Father : public Grandfather {
public:
void displayFather() {
cout << "Father" << endl;

}
};
class Son : public Father {
public:
void displaySon() {
cout << "Son" << endl;

}
};
int main() {
Son son;
son.displayGrandfather();
son.displayFather();
son.displaySon();
return 0;

}
15. Develop a c++ program to implement inheritance shown in following fig. 4 W-22

RSCOEP Department of Computer Engineering Prof.S.U.Puri 94

#include <iostream>
#include <string>
using namespace std;
class Company {
public:
string name;
string location;
void setCompanyDetails(string name, string location) {
this->name = name;
this->location = location;

}
void displayCompanyDetails() {
cout << "Company Name: " << name << endl;
cout << "Company Location: " << location << endl;

}
};
class Employee : public Company {
public:
string name;
int id;
long contactNo;
void setEmployeeDetails(string name, int id, long contactNo) {
this->name = name;
this->id = id;
this->contactNo = contactNo;

}
void displayEmployeeDetails() {
cout << "Employee Name: " << name << endl;
cout << "Employee ID: " << id << endl;
cout << "Employee Contact No.: " << contactNo << endl;

}
void displayAllDetails() {
displayCompanyDetails();

RSCOEP Department of Computer Engineering Prof.S.U.Puri 95

displayEmployeeDetails();
}

};
class Customer : public Company {
public:
string name;
string address;
long contactNo;
void setCustomerDetails(string name, string address, long contactNo) {
this->name = name;
this->address = address;
this->contactNo = contactNo;

}
void displayCustomerDetails() {
cout << "Customer Name: " << name << endl;
cout << "Customer Address: " << address << endl;
cout << "Customer Contact No.: " << contactNo << endl;

}
void displayAllDetails() {
displayCompanyDetails();
displayCustomerDetails();

}
};
int main() {
Employee employee;
Customer customer;
// Set company details (common to both)
employee.setCompanyDetails("XYZ Corporation", "Mumbai");
customer.setCompanyDetails("XYZ Corporation", "Mumbai");
// Set employee details
employee.setEmployeeDetails("John Doe", 12345, 9876543210);
// Set customer details
customer.setCustomerDetails("Jane Smith", "Pune", 9876543211);
cout << "\nEmployee Details:\n";
employee.displayAllDetails();
cout << "\nCustomer Details:\n";
customer.displayAllDetails();
return 0;

}
16. Write a C++ program to declare a class college with name and code. Derive a

new class as student with members as name. Accept and display details of one
student along with college data.

4 S-22

#include <iostream>

RSCOEP Department of Computer Engineering Prof.S.U.Puri 96

#include <string>
using namespace std;
class College {
protected:
string name;
string code;

public:
void setCollegeDetails(string name, string code) {
this->name = name;
this->code = code;

}
void displayCollegeDetails() {
cout << "College Name: " << name << endl;
cout << "College Code: " << code << endl;

}
};
class Student : public College {
private:
string name;

public:
void setStudentDetails(string name) {
this->name = name;

}

void displayStudentDetails() {
cout << "Student Name: " << name << endl;

}
};
int main() {
Student student;
string collegeName, collegeCode, studentName;
cout << "Enter College Name: ";
getline(cin, collegeName);
cout << "Enter College Code: ";
getline(cin, collegeCode);
cout << "Enter Student Name: ";
getline(cin, studentName);
student.setCollegeDetails(collegeName, collegeCode);
student.setStudentDetails(studentName);
cout << endl << "College Details:" << endl;
student.displayCollegeDetails();
cout << endl << "Student Details:" << endl;
student.displayStudentDetails();

RSCOEP Department of Computer Engineering Prof.S.U.Puri 97

return 0;
}

17. Write a C++ program to implement following inheritance: Refer Fig. No. 1.

Accept and display total of one object of result.

6 S-22

#include <iostream>

using namespace std;

class Science {

protected:

int phy_marks, chy_marks;

public:

void setScienceMarks(int p, int c) {

phy_marks = p;

chy_marks = c;

}

};

class Maths {

protected:

int alg_marks, geo_marks;

public:

void setMathsMarks(int a, int g) {

RSCOEP Department of Computer Engineering Prof.S.U.Puri 98

alg_marks = a;

geo_marks = g;

}

};

class Result : public Science, public Maths {

private:

int total;

public:

void calculateTotal() {

total = phy_marks + chy_marks + alg_marks + geo_marks;

}

void displayTotal() {

cout << "Total Marks: " << total << endl;

}

};

int main() {

Result result;

int phy, chy, alg, geo;

cout << "Enter Physics marks: ";

cin >> phy;

cout << "Enter Chemistry marks: ";

cin >> chy;

cout << "Enter Algebra marks: ";

cin >> alg;

cout << "Enter Geometry marks: ";

cin >> geo;

RSCOEP Department of Computer Engineering Prof.S.U.Puri 99

result.setScienceMarks(phy, chy);

result.setMathsMarks(alg, geo);

result.calculateTotal();

result.displayTotal();

return 0;

}

18. Write a program to implement inheritance as shown in figure No. 2. Assume
suitable member function

Accept and display data of one Teacher and one Officer.

6 S-22

#include <iostream>

#include <string>

using namespace std;

class Staff {

protected:

string code;

public:

void setCode(const string& c) {

code = c;

}

void displayCode() const {

RSCOEP Department of Computer Engineering Prof.S.U.Puri 100

cout << "Code: " << code << endl;

}

};

class Teacher : public Staff {

protected:

string subject;

public:

void setSubject(const string& s) {

subject = s;

}

void displaySubject() const {

cout << "Subject: " << subject << endl;

}

};

class Officer : public Staff {

protected:

string grade;

public:

void setGrade(const string& g) {

grade = g;

}

void displayGrade() const {

cout << "Grade: " << grade << endl;

}

};

int main() {

RSCOEP Department of Computer Engineering Prof.S.U.Puri 101

Teacher teacher;

Officer officer;

// Accept data for Teacher

string teacherCode, teacherSubject;

cout << "Enter Teacher Code: ";

cin >> teacherCode;

cout << "Enter Teacher Subject: ";

cin >> teacherSubject;

teacher.setCode(teacherCode);

teacher.setSubject(teacherSubject);

// Accept data for Officer

string officerCode, officerGrade;

cout << "Enter Officer Code: ";

cin >> officerCode;

cout << "Enter Officer Grade: ";

cin >> officerGrade;

officer.setCode(officerCode);

officer.setGrade(officerGrade);

// Display data for Teacher

cout << "\nTeacher Details:\n";

teacher.displayCode();

teacher.displaySubject();

// Display data for Officer

cout << "\nOfficer Details:\n";

officer.displayCode();

officer.displayGrade();

RSCOEP Department of Computer Engineering Prof.S.U.Puri 102

return 0;

}

19. What is multilevel inheritance? Draw the diagram to show multilevel
inheritance. using classes with data member and member function.

2 W-19

Multilevel inheritance is a type of inheritance in which a derived class inherits
properties from a base class, and another derived class inherits from the first
derived class. This creates a chain of inheritance.

#include <iostream>

using namespace std;

class Grandfather {

protected:

string name;

public:

void setGrandfatherName(string n) {

name = n;

}

void displayGrandfatherName() {

cout << "Grandfather's name: " << name << endl;

}

};

class Father : public Grandfather {

protected:

RSCOEP Department of Computer Engineering Prof.S.U.Puri 103

string occupation;

public:

void setFatherOccupation(string o) {

occupation = o;

}

void displayFatherOccupation() {

cout << "Father's occupation: " << occupation << endl;

}

};

class Son : public Father {

public:

void displayInfo() {

displayGrandfatherName();

displayFatherOccupation();

cout << "Son is studying." << endl;

}

};

int main() {

Son son;

son.setGrandfatherName("John Doe");

son.setFatherOccupation("Engineer");

son.displayInfo();

return 0;

}

20. Write a program to implement single inheritance from the following Refer
Figure No. 1.

4 W-19

RSCOEP Department of Computer Engineering Prof.S.U.Puri 104

#include <iostream>

#include <string>

using namespace std;

class Employee {

public:

int emp_id;

string name;

void setEmployeeDetails(int id, const string& n) {

emp_id = id;

name = n;

}

void displayEmployeeDetails() {

cout << "Employee ID: " << emp_id << endl;

cout << "Employee Name: " << name << endl;

}

};

RSCOEP Department of Computer Engineering Prof.S.U.Puri 105

class emp_info : public Employee {

public:

float basic_salary;

void setBasicSalary(float salary) {

basic_salary = salary;

}

void displayEmployeeInfo() {

displayEmployeeDetails(); // Inherit display from base class

cout << "Basic Salary: " << basic_salary << endl;

}

};

int main() {

emp_info employee;

employee.setEmployeeDetails(12345, "John Doe");

employee.setBasicSalary(50000.0);

employee.displayEmployeeInfo();

return 0;

}

21. Write a program to implement the following hierarchy using suitable member
functions. Refer Figure No. 2.

6 W-19

RSCOEP Department of Computer Engineering Prof.S.U.Puri 106

#include <iostream>

using namespace std;

class Student {

public:

int roll_no;

string name;

void setStudentDetails(int r, string n) {

roll_no = r;

name = n;

}

void displayStudentDetails() {

cout << "Roll No: " << roll_no << endl;

cout << "Name: " << name << endl;

}

RSCOEP Department of Computer Engineering Prof.S.U.Puri 107

};

class Test : public Student {

public:

int marks1, marks2;

void setTestMarks(int m1, int m2) {

marks1 = m1;

marks2 = m2;

}

void displayTestMarks() {

cout << "Marks 1: " << marks1 << endl;

cout << "Marks 2: " << marks2 << endl;

}

};

class Sports : public Student {

public:

int score;

void setSportsScore(int s) {

score = s;

}

void displaySportsScore() {

cout << "Sports Score: " << score << endl;

}

};

class Result : public Test {

public:

int total;

RSCOEP Department of Computer Engineering Prof.S.U.Puri 108

void calculateTotal() {

total = marks1 + marks2;

}

void displayResult() {

displayStudentDetails();

displayTestMarks();

cout << "Total Marks: " << total << endl;

}

};

int main() {

Result result;

result.setStudentDetails(123, "Alice");

result.setTestMarks(85, 90);

result.calculateTotal();

result.displayResult();

return 0;

}

22. Describe derived class with example. 2 S-19

A derived class (also known as a subclass or child class) is a class that inherits
properties and methods from another class called the base class (or parent class or
superclass). It's a fundamental concept in object-oriented programming that
promotes code reusability and hierarchical relationships between classes.

#include <iostream>

using namespace std;

class Shape {

protected:

string color;

public:

RSCOEP Department of Computer Engineering Prof.S.U.Puri 109

void setColor(string c) {

color = c;

}

string getColor() {

return color;

}

};

class Circle : public Shape {

private:

double radius;

public:

void setRadius(double r) {

radius = r;

}

double getArea() {

return 3.14159 * radius * radius;

}

};

class Rectangle : public Shape {

private:

double width, height;

public:

void setDimensions(double w, double h) {

width = w;

height = h;

}

RSCOEP Department of Computer Engineering Prof.S.U.Puri 110

double getArea() {

return width * height;

}

};

int main() {

Circle circle;

circle.setColor("Red");

circle.setRadius(5);

Rectangle rectangle;

rectangle.setColor("Blue");

rectangle.setDimensions(4, 6);

cout << "Circle color: " << circle.getColor() << ", Area: " << circle.getArea() <<
endl;

cout << "Rectangle color: " << rectangle.getColor() << ", Area: " <<
rectangle.getArea() << endl;

return 0;

}

23. Write a C++ program to declare a class COLLEGE with members as college
code. Derive a new class as STUDENT with members as studid. Accept and
display details of student along with college for one object of student.

4 S-19

#include <iostream>

#include <string>

using namespace std;

class COLLEGE {

protected:

string college_code;

public:

void setCollegeCode(string code) {

RSCOEP Department of Computer Engineering Prof.S.U.Puri 111

college_code = code;

}

void displayCollegeCode() {

cout << "College Code: " << college_code << endl;

}

};

class STUDENT : public COLLEGE {

private:

int studid;

public:

void setStudentId(int id) {

studid = id;

}

void displayStudentId() {

cout << "Student ID: " << studid << endl;

}

void displayDetails() {

displayCollegeCode();

displayStudentId();

}

};

int main() {

STUDENT student;

string college_code;

int studid;

cout << "Enter College Code: ";

RSCOEP Department of Computer Engineering Prof.S.U.Puri 112

cin >> college_code;

cout << "Enter Student ID: ";

cin >> studid;

student.setCollegeCode(college_code);

student.setStudentId(studid);

cout << "\nStudent Details:\n";

student.displayDetails();

return 0;

}

24. Describe with examples, passing parameters to base class constructor and
derived class constructor by creating object of derived class.

4 S-19

Passing Parameters to Base and Derived Class Constructors

When creating an object of a derived class, the constructor of the base class is
called before the constructor of the derived class. This allows you to pass
parameters to both constructors to initialize members of both classes.

Passing Parameters to Base Class Constructor

To pass parameters to the base class constructor, you use the member initialization
list in the derived class constructor.

#include <iostream>

using namespace std;

class Base {

public:

int x;

Base(int val) : x(val) {

cout << "Base constructor called with value " << x << endl;

}

};

class Derived : public Base {

RSCOEP Department of Computer Engineering Prof.S.U.Puri 113

public:

int y;

Derived(int val1, int val2) : Base(val1), y(val2) {

cout << "Derived constructor called with value " << y << endl;

}

};

int main() {

Derived obj(10, 20);

return 0;

}

25. Write a program to implement multiple inheritance as shown in following
Figure No. 1:

Accept and display data for one object of class result.

4 S-19

#include <iostream>

using namespace std;

class Subject1 {

public:

int m1;

void setM1(int m) {

m1 = m;

RSCOEP Department of Computer Engineering Prof.S.U.Puri 114

}

void displayM1() {

cout << "Subject 1 marks: " << m1 << endl;

}

};

class Subject2 {

public:

int m2;

void setM2(int m) {

m2 = m;

}

void displayM2() {

cout << "Subject 2 marks: " << m2 << endl;

}

};

class Result : public Subject1, public Subject2 {

public:

int total;

void calculateTotal() {

total = m1 + m2;

}

void displayResult() {

displayM1();

displayM2();

cout << "Total marks: " << total << endl;

}

RSCOEP Department of Computer Engineering Prof.S.U.Puri 115

};

int main() {

Result result;

int m1, m2;

cout << "Enter marks for Subject 1: ";

cin >> m1;

cout << "Enter marks for Subject 2: ";

cin >> m2;

result.setM1(m1);

result.setM2(m2);

result.calculateTotal();

result.displayResult();

return 0;

}

26. Write a C++ program to implement following inheritance. Refer Figure No. 2.

Accept and display data for one object of class result (Hint : use virtual base

6 S-19

RSCOEP Department of Computer Engineering Prof.S.U.Puri 116

class).

include <iostream.h>

#include<conio.h>

class College_Student

{

int student_id;

char College_code[5];

public:

void read_collegeStud_Data()

{

cout<<”Enter college code and student id\n”;

cin>>college_code>>student_id;

}

void display_collegeStud_Data()

{

cout<<”\ncollege code\tstudent id\n”;

cout<<college_code<<”\t”<<student_id<<”\n”;

}

};

class test: virtual public College_Student

{

float percentage;

public:

void read_test()

{

cout<<”\n Enter test percentage\n”;

RSCOEP Department of Computer Engineering Prof.S.U.Puri 117

cin>> percentage;

}

void display_test()

{

cout<<”\n test percentage:”<<percentage;

}

};

class sports: virtual public College_Student

{

char grade[5];

public:

void read_sportsData()

{

cout<<”\n Enter sport grade\n”;

cin>> grade;

}

void display_sportsData()

{

Cout<<”\n sport grade:”<<grade;

}

};

class result: public test, public sports

{

public:

void read_result()

{

RSCOEP Department of Computer Engineering Prof.S.U.Puri 118

read_collegeStud_Data() ;

read_test()

read_sportsData();

}

void display_result()

{

display_collegeStud_Data() ;

display_test()

display_sportsData();

}

};

void main()

{

result r;

clrscr();

r.read_result();

r.display_result();

}

27. Describe use of protected access specifier used in the class. 2 W-18

The protected access specifier in object-oriented programming languages like C++,
Java, and C# provides a level of access control between a class and its derived
classes.

28. Write syntax to define a derived class. 2 W-18

class DerivedClassName : visibility_mode BaseClassName {

// Members of the derived class

};

29. Write a C++ program to declare a class ‘College’ with data members as name
and college code. Derive a new class ‘student’ from the class college with data

4 W-18

RSCOEP Department of Computer Engineering Prof.S.U.Puri 119

members as sname and roll no. Accept and display details of one student with
college data.

#include <iostream>

#include <string>

using namespace std;

class College {

public:

string name;

string code;

void setCollegeDetails(string n, string c) {

name = n;

code = c;

}

void displayCollegeDetails() {

cout << "College Name: " << name << endl;

cout << "College Code: " << code << endl;

}

};

class Student : public College {

public:

string sname;

int roll_no;

void setStudentDetails(string sn, int rno) {

sname = sn;

roll_no = rno;

}

void displayStudentDetails() {

RSCOEP Department of Computer Engineering Prof.S.U.Puri 120

cout << "Student Name: " << sname << endl;

cout << "Roll No: " << roll_no << endl;

}

void displayAllDetails() {

displayCollegeDetails();

displayStudentDetails();

}

};

int main() {

Student student;

string college_name, college_code, student_name;

int roll_no;

cout << "Enter College Name: ";

getline(cin, college_name);

cout << "Enter College Code: ";

cin >> college_code;

cout << "Enter Student Name: ";

getline(cin, student_name);

cout << "Enter Roll No: ";

cin >> roll_no;

student.setCollegeDetails(college_name, college_code);

student.setStudentDetails(student_name, roll_no);

cout << "\nCollege and Student Details:\n";

student.displayAllDetails();

return 0;

}

RSCOEP Department of Computer Engineering Prof.S.U.Puri 121

30. Write a C++ program to implement inheritance shown in following figure:

Accept and display data of one teacher and one student using object of class
‘Info’.

4 W-18

#include <iostream>

#include <string>

using namespace std;

class Info {

public:

string name;

void setName(string n) {

name = n;

}

void displayInfo() {

cout << "Name: " << name << endl;

}

};

class Teacher : public Info {

public:

int empid;

void setEmpId(int id) {

empid = id;

}

RSCOEP Department of Computer Engineering Prof.S.U.Puri 122

void displayTeacherDetails() {

displayInfo();

cout << "Emp ID: " << empid << endl;

}

};

class Student : public Info {

public:

int rollno;

void setRollNo(int rno) {

rollno = rno;

}

void displayStudentDetails() {

displayInfo();

cout << "Roll No: " << rollno << endl;

}

};

int main() {

Teacher teacher;

Student student;

// Teacher details

teacher.setName("Mr. Smith");

teacher.setEmpId(12345);

// Student details

student.setName("Alice Johnson");

student.setRollNo(23456);

// Display details

RSCOEP Department of Computer Engineering Prof.S.U.Puri 123

cout << "Teacher Details:\n";

teacher.displayTeacherDetails();

cout << "\nStudent Details:\n";

student.displayStudentDetails();

return 0;

}

31. Write a C++ program to implement following inheritance.

Accept and display data for one programmer and one manager. Make display
function virtual.

6 W-18

#include <iostream>

#include <string>

using namespace std;

class Employee {

protected:

int empid;

string empcode;

public:

void setEmpid(int id) {

empid = id;

}

void setEmpcode(string code) {

RSCOEP Department of Computer Engineering Prof.S.U.Puri 124

empcode = code;

}

virtual void display() = 0; // Pure virtual function

};

class Programmer : public Employee {

private:

string skill;

public:

void setSkill(string s) {

skill = s;

}

void display() override {

cout << "Programmer Details:" << endl;

cout << "Emp ID: " << empid << endl;

cout << "Emp Code: " << empcode << endl;

cout << "Skill: " << skill << endl;

}

};

class Manager : public Employee {

private:

string department;

public:

void setDepartment(string dept) {

department = dept;

}

void display() override {

RSCOEP Department of Computer Engineering Prof.S.U.Puri 125

cout << "Manager Details:" << endl;

cout << "Emp ID: " << empid << endl;

cout << "Emp Code: " << empcode << endl;

cout << "Department: " << department << endl;

}

};

int main() {

Programmer programmer;

Manager manager;

programmer.setEmpid(101);

programmer.setEmpcode("P001");

programmer.setSkill("C++");

manager.setEmpid(201);

manager.setEmpcode("M001");

manager.setDepartment("HR");

programmer.display();

cout << endl;

manager.display();

return 0;

}

32. Write C++ program for following multilevel inheritance. 6 W-18

RSCOEP Department of Computer Engineering Prof.S.U.Puri 126

Accept and display data for one car with all details.

#include <iostream>

#include <string>

using namespace std;

class CarManufacturer {

public:

string name;

void setManufacturerName(string n) {

name = n;

}

void displayManufacturerName() {

cout << "Manufacturer Name: " << name << endl;

}

};

class CarModel : public CarManufacturer {

public:

string modelName;

int modelNo;

void setModelDetails(string mn, int mno) {

RSCOEP Department of Computer Engineering Prof.S.U.Puri 127

modelName = mn;

modelNo = mno;

}

void displayModelDetails() {

cout << "Model Name: " << modelName << endl;

cout << "Model No: " << modelNo << endl;

}

};

class Car : public CarModel {

public:

int carNo;

string color;

void setCarDetails(int cn, string c) {

carNo = cn;

color = c;

}

void displayCarDetails() {

cout << "Car No: " << carNo << endl;

cout << "Color: " << color << endl;

}

void displayAllDetails() {

displayManufacturerName();

displayModelDetails();

displayCarDetails();

}

};

RSCOEP Department of Computer Engineering Prof.S.U.Puri 128

int main() {

Car car;

string manufacturerName, modelName;

int modelNo, carNo;

cout << "Enter Manufacturer Name: ";

getline(cin, manufacturerName);

cout << "Enter Model Name: ";

getline(cin, modelName);

cout << "Enter Model No: ";

cin >> modelNo;

cout << "Enter Car No: ";

cin >> carNo;

cout << "Enter Car Color: ";

cin.ignore(); // Ignore newline character

getline(cin, car.color);

car.setManufacturerName(manufacturerName);

car.setModelDetails(modelName, modelNo);

car.setCarDetails(carNo, car.color);

cout << "\nCar Details:\n";

car.displayAllDetails();

return 0;

}

	Unit 3:Extending classes using Inheritance

