
RSCOEP Department of Computer Engineering Prof.S.U.Puri 37

JSPM’s
RAJARSHI SHAHU COLLEGE OF ENGINEERING,

POLYTECHNIC
Department of Computer Engineering

Academic Year: 2024-25

Subject – OOP Using C++ (313304) Question Bank – Unit -2

Unit 2:Functions and Constructors
CO2-Develop C++ programs using constructors.

Sr.No Questions Mark
s

Year

1. Explain friend function with suitable example 4 S-24

Explain the friend function with proper example.(Repeat) 4 W-19

Friend function:
The private members of a class cannot be accessed from outside the class but in
some situations two classes may need access of each other’s private data.
The common function is made friendly with all those classes whose private data
need to be shared in that function. This common function is called as friend
function.
Characteristics:
• Friend function is not in the scope of the class to which it has been
declared as friend.
• It is called without any object of class like a normal function.
• It cannot access the member names directly and has to use an object name
and dot membership operator with each member name.
• It can be declared either in the public or the private part of a class without
affecting its meaning.
• It has the objects as arguments.
Example:
Program to interchange values of two integer numbers using friend function.

#include<iostream>
using namespace std;
class B;
class A
{
int x;

public: void accept()

{

Marks -
16

RSCOEP Department of Computer Engineering Prof.S.U.Puri 38

cout<<"\n Enter the value for x:";

cin>>x;

}

friend void swap(A,B);

};

class B

{

int y;

public: void accept()

{

cout<<"\n Enter the value for y:";

cin>>y;

}

friend void swap(A,B);

};

void swap(A a, B b)

{

cout<<"\n Before swapping:";

cout<<"\n Value for x="<<a.x;

cout<<"\n Value for y="<<b.y;

int temp;

temp =a.x;

a.x=b.y;

b.y=temp;

cout<<"\n After swapping:";

cout<<"\n Value for x="<<a.x;

RSCOEP Department of Computer Engineering Prof.S.U.Puri 39

cout<<"\n Value for y="<<b.y;

}

int main()

{

A a;

B b;

a.accept();

b.accept();

swap(a,b);

}

2. Differentiate between constructor and destructor (any 4 points) 4 S-24

Differentiate between constructor and destructor. 4 S-19

Differentiate between constructor and destructor in C++(Any four
points)

4 W-23

State the difference between constructor and destructor. (any six
points)

6 S-23

RSCOEP Department of Computer Engineering Prof.S.U.Puri 40

S.No. Constructor Destructor

1 Constructor helps to initialize
the object of a class.

Whereas destructor is used to
destroy the instances.

2 It is declared
as className(arguments if
any){Constructor’s Body }.

Whereas it is declared as ~
className(no
arguments){ }.

3 Constructor can either accept
arguments or not.

While it can’t have any
arguments.

4 A constructor is called when
an instance or object of a
class is created.

It is called while object of
the class is freed or deleted.

5 Constructor is used to allocate
the memory to an instance or
object.

While it is used to deallocate
the memory of an object of a
class.

6 Constructor can be
overloaded.

While it can’t be overloaded.

7 The constructor’s name is
same as the class name.

Here, its name is also same
as the class name preceded
by the tiled (~) operator.

8 In a class, there can be
multiple constructors.

While in a class, there is
always a single destructor.

9 There is a concept of copy
constructor which is used to
initialize an object from
another object.

While here, there is no copy
destructor concept.

10 They are often called in
successive order.

They are often called in
reverse order of constructor.

3. Develop a C++ program using parameterized constructor 6 S-24

#include<iostream>

RSCOEP Department of Computer Engineering Prof.S.U.Puri 41

using namespace std;

class number

{

int x;

public:

number(int y)

{

x=y;

}

void display()

{

cout<<"The square of number is:"<<x*x;

}

};

int main()

{

number n(50);

n.display();

}

4. Explain inline member function 2 W-23

An inline function in C++ is a function that the compiler attempts to
replace with its actual code whenever the function is called. This can
potentially improve the performance of your program by reducing the
overhead associated with function calls.

Syntax:

inline <return type> function_name(parameter list)

{

RSCOEP Department of Computer Engineering Prof.S.U.Puri 42

// function body

}

Example:

inline int square(int x) {

return x * x;

}

int main() {

int y = square(5);

// ...

}

5. Explain the characteristics of friend function. 4 W-23

1) It is not in the scope of the class to which it has been declared as
friend.

2) Since it is not in the scope of a class, it cannot be called using the
object of that class.

3) It can be invoked like a normal function without the help of any
object.

4) Unlike member functions, it cannot access the member names
directly and has to use an object name and dot membership operator
with each member name.

5) It can be declared either in public or the private part of a class
without affecting its meaning.

6) It has the objects as arguments.

7) The friend function should not be defined inside the class.

6. Write a program to declare a class measure having data members
add1,add2 and add3. Initialize the data members using constructor
and store their addition in third data member using function and
display the addition.

4 W-23

RSCOEP Department of Computer Engineering Prof.S.U.Puri 43

#include<iostream>

#include<conio.h>

using namespace std;

class measure

{

private:

int add1,add2,add3;

public:

measure()

{

add1=10;

add2=20;

}

void sum()

{

add3=add1+add2;

}

void display()

{

cout<<"\nSum = "<<add3;

}

};

int main()

{

RSCOEP Department of Computer Engineering Prof.S.U.Puri 44

measure m();

measure m1;

m1.sum();

m1.display();

getch();

return 0;

}

OR

//Using Parameterized Constructor

#include<iostream>

#include<conio.h>

using namespace std;

class measure

{

private:

int add1, add2, add3;

public:

measure(int a,int b)

{

add1=a;

add2=b;

}

void sum()

{

RSCOEP Department of Computer Engineering Prof.S.U.Puri 45

add3=add1+add2;

}

void display()

{

cout<<"\nSum = "<<add3;

}

};

int main()

{

measure m(10,20);//if parameterized constructor is used

m.sum();

m.display();

getch();

return 0;

}

7. Write a program to declare class ‘employee’ containing data members ‘emp-
id’ and salary. Accept and display the data for 10 employee.

6 W-23

#include <iostream>

using namespace std;

class employee {

private:

int emp_id;

double salary;

public:

void setData(int id, double sal) {

RSCOEP Department of Computer Engineering Prof.S.U.Puri 46

emp_id = id;

salary = sal;

}

void displayData() {

cout << "Employee ID: " << emp_id << ", Salary: " << salary << endl;

}

};

int main()

{

Employee employees[10];

// Accepting data for 10 employees

for (int i = 0; i <10; ++i) {

int empId;

double salary;

cout << "Enter details for Employee " << i + 1 << std::endl;

cout << "Enter Employee ID: ";

cin >> empId;

cout << "Enter Salary: ";

cin >> salary;

employees[i].setData(empId, salary);

}

// Displaying data for 10 employees

cout << "\nDetails of Employees:" <<endl;

for (int i = 0; i <10; ++i) {

std::cout << "Employee " << i + 1 << ": ";

employees[i].displayData();

RSCOEP Department of Computer Engineering Prof.S.U.Puri 47

}

return 0;

}

8. State the characteristics of static member function 2 S-23

Write two properties of static member function.(Repeat) 2 W-19

Characteristics of Static Member Functions in C++

Static member functions are special functions associated with a class
rather than individual objects. They have the following characteristics:

1. Associated with the Class

They belong to the class itself, not to specific objects of the class.

They can be accessed using the class name and the scope resolution
operator (::).

2. No this pointer

Static member functions do not have access to the this pointer.

This means they cannot access non-static members (data or functions)
of the class.

3. Can access static members

They can access static data members and other static member functions
of the class.

4. Can be called without creating an object

They can be invoked directly using the class name, even if no objects
of the class exist.

5. Can be declared as const

Static member functions can be declared as const to indicate that they
do not modify the class's state.

6. Cannot be virtual

Static member functions cannot be declared as virtual. Polymorphism

RSCOEP Department of Computer Engineering Prof.S.U.Puri 48

is not applicable to static members.

7. Used for class-level operations

They are often used for operations that are related to the class as a
whole, rather than to specific objects.

9. Give the syntax for constructor in derived classes. 2 S-23

#include <iostream>

// Base class

class Base {

public:

Base() {

std::cout << "Base constructor\n";

}

};

// Derived class

class Derived : public Base {

public:

Derived() {

std::cout << "Derived constructor\n";

}

};

int main() {

Derived d; // Creating an object of the derived class

return 0;

}

10. Explain overloaded constructor with suitable example. 4 S-23

1. Overloaded constructors essentially have the same name (exact

RSCOEP Department of Computer Engineering Prof.S.U.Puri 49

name of the class) and different by number and type of arguments.

2. A constructor is called depending upon the number and type of
arguments passed.

3. While creating the object, arguments must be passed to let compiler
know, which constructor needs to be called.

// C++ program to illustrate

// Constructor overloading

#include <iostream>

using namespace std;

class construct

{

public:

float area;

// Constructor with no parameters

construct()

{

area = 0;

}

// Constructor with two parameters

construct(int a, int b)

{

area = a * b;

}

void disp()

{

RSCOEP Department of Computer Engineering Prof.S.U.Puri 50

cout<< area<< endl;

}

};

int main()

{ // Constructor Overloading

// with two different constructors

// of class name

construct o;

construct o2(10, 20);

o.disp();

o2.disp();

return 1;

}

11. Compare static and non-static data members. (any four points) 4 S-23

12. List any four properties of constructor function. 4 S-23

 The constructor name is the same as the Class Name. ...

RSCOEP Department of Computer Engineering Prof.S.U.Puri 51

 A constructor must not declare a return type or void. ...
 They can be defined inside or outside the class definition.
 Automatically calls when an object is created for the class.

13. Write a program to show object as function argument. 6 S-23

// C++ program to show passing of objects to a function

#include <iostream>

using namespace std;

class Example {

public:

int a;

// This function will take an object as an argument

void add(Example E)

{

a = a + E.a;

}

};

// Driver Code

int main()

{ // Create objects

Example E1, E2;

// Values are initialized for both objects

E1.a = 50;

E2.a = 100;

cout << "Initial Values \n";

cout << "Value of object 1: " << E1.a

RSCOEP Department of Computer Engineering Prof.S.U.Puri 52

<< "\n& object 2: " << E2.a

<< "\n\n";

// Passing object as an argument

// to function add()

E2.add(E1);

// Changed values after passing

// object as argument

cout << "New values \n";

cout << "Value of object 1: " << E1.a

<< "\n& object 2: " << E2.a

<< "\n\n";

return 0;

}

14. Define constructors and it's type. 2 W-22

Define constructor. List types of constructor 2 S-22

Constructors in C++ are the member functions that get invoked when
an object of a class is created.

There are mainly three types of constructors in C++,

1. Default

2. Parameterized

3. Copy constructors.

15. Develop a c++ program for accept data from user to calculate
percentage for 5 subject and display grade according to
percentage.

4 W-22

#include <iostream>

RSCOEP Department of Computer Engineering Prof.S.U.Puri 53

using namespace std;

int main() {

float sub1, sub2, sub3, sub4, sub5, total, percentage;

// Input marks for 5 subjects

cout << "Enter marks for 5 subjects: ";

cin >> sub1 >> sub2 >> sub3 >> sub4 >> sub5;

// Calculate total marks

total = sub1 + sub2 + sub3 + sub4 + sub5;

// Calculate percentage

percentage = (total / 500) * 100;

// Determine grade based on percentage

char grade;

if (percentage >= 90) {

grade = 'A+';

} else if (percentage >= 80) {

grade = 'A';

} else if (percentage >= 70) {

grade = 'B+';

} else if (percentage >= 60) {

grade = 'B';

} else if (percentage >= 50) {

grade = 'C';

} else if (percentage >= 40) {

grade = 'D';

RSCOEP Department of Computer Engineering Prof.S.U.Puri 54

} else {

grade = 'F';

}

// Display results

cout << "Total marks: " << total << endl;

cout << "Percentage: " << percentage << "%" << endl;

cout << "Grade: " << grade << endl;

return 0;

}

16. Explain with suitable example Friend Function. 4 W-22

Friend Functions in C++

A friend function is a special function that is not a member of a class
but has the privilege to access the private and protected members of
that class. It's declared within the class using the friend keyword.

Why use friend functions?

To access private members of multiple classes.

To provide utility functions that operate on class objects without being
class members.

For operator overloading (which we'll discuss in another context).

#include <iostream>

class Box {

private:

int length;

int breadth;

int height;

RSCOEP Department of Computer Engineering Prof.S.U.Puri 55

public:

Box(int l, int b, int h) {

length = l;

breadth = b;

height = h;

}

friend int volume(Box b); // Friend function declaration

};

int volume(Box b) {

return b.length * b.breadth * b.height;

}

int main() {

Box box(3, 4, 5);

std::cout << "Volume of the box is: " << volume(box) << std::endl;

return 0;

}

17. Develop a c++ program for constructor with default argument and
use of destructor.

6 W-22

#include <iostream>

using namespace std;

class MyClass {

public:

int x;

// Constructor with default argument

RSCOEP Department of Computer Engineering Prof.S.U.Puri 56

MyClass(int val = 10) {

x = val;

cout << "Constructor called with value: " << x << endl;

}

// Destructor

~MyClass() {

cout << "Destructor called for object with value: " << x << endl;

}

};

int main() {

MyClass obj1; // Using default argument

MyClass obj2(20); // Passing a value

return 0;

}

18. Write any two characteristics of friend function. 2 S-22

Two Characteristics of Friend Functions in C++

Access to Private Members:

Friend functions can access private and protected members of a class, unlike
ordinary functions which are restricted to public members. This ability to
bypass encapsulation is a key feature of friend functions.

Not a Member of the Class:

Despite having access to private members, a friend function is not
considered a member of the class. It is declared within the class using the
friend keyword but defined outside the class. This means it cannot be called
using the dot operator on an object.

19. Write a C++ program to declare a class student with data members as
roll no and name. Declare a constructor to initialize data members of

4 S-22.S-19

RSCOEP Department of Computer Engineering Prof.S.U.Puri 57

class. Display the data.

#include <iostream>

#include <string>

using namespace std;

class Student {

public:

int roll_no;

string name;

// Constructor to initialize data members

Student(int r, string n) {

roll_no = r;

name = n;

}

// Function to display student data

void display() {

cout << "Roll No: " << roll_no << endl;

cout << "Name: " << name << endl;

}

};

int main() {

int r;

string n;

cout << "Enter roll number: ";

cin >> r;

cout << "Enter name: ";

RSCOEP Department of Computer Engineering Prof.S.U.Puri 58

cin >> n;

Student s(r, n); // Create a student object

s.display(); // Display student data

return 0;

}

20. Write a C++ program to declare a class mobile having data members as
price and model number. Accept and display the data for Ten objects.

4 S-22

#include <iostream>

#include <string>

using namespace std;

class Mobile {

public:

int price;

string model_number;

Mobile(int p, string m) {

price = p;

model_number = m;

}

void display() {

cout << "Price: " << price << endl;

cout << "Model Number: " << model_number << endl;

}

};

int main() {

Mobile mobiles[10];

RSCOEP Department of Computer Engineering Prof.S.U.Puri 59

int p;

string m;

for (int i = 0; i < 10; i++) {

cout << "Enter price for mobile " << i + 1 << ": ";

cin >> p;

cout << "Enter model number for mobile " << i + 1 << ": ";

cin >> m;

mobiles[i] = Mobile(p, m);

}

cout << "\nMobile Details:\n";

for (int i = 0; i < 10; i++) {

cout << "Mobile " << i + 1 << ":" << endl;

mobiles[i].display();

cout << endl;

}

return 0;

}

21. Describe constructor with default arguments with an example.(Repeat) 4 S-22

Constructors with Default Arguments

A constructor with default arguments allows you to provide default values
for parameters. This means you can create objects of a class without
specifying values for all parameters, using the provided default values
instead.

class MyClass {

public:

MyClass(int a, int b = 10, int c = 20) {

RSCOEP Department of Computer Engineering Prof.S.U.Puri 60

// Constructor body

}

};

Example:

#include <iostream>

class Rectangle {

public:

int length, breadth;

Rectangle(int l, int b = 5) {

length = l;

breadth = b;

}

int area() {

return length * breadth;

}

};

int main() {

Rectangle rect1(4, 6); // Both parameters are provided

Rectangle rect2(3); // Only one parameter is provided, b will be 5

Rectangle rect3(2); // Only one parameter is provided, b will be 5

std::cout << rect1.area() << std::endl;

std::cout << rect2.area() << std::endl;

std::cout << rect3.area() << std::endl;

return 0;

}

RSCOEP Department of Computer Engineering Prof.S.U.Puri 61

22. (Hint : class 1 contains m1 and class 2 contains m2) Write a C++
program to declare two classes with data members as m1 and m2
respectively. Use friend function to calculate average of two (m1, m2)
marks and display it.

6 S-22

#include <iostream>

using namespace std;

class Class2;

class Class1 {

private:

int m1;

public:

Class1(int m) : m1(m) {}

friend float average(Class1 obj1, Class2 obj2);

};

class Class2 {

private:

int m2;

public:

Class2(int m) : m2(m) {}

friend float average(Class1 obj1, Class2 obj2);

};

float average(Class1 obj1, Class2 obj2) {

return (obj1.m1 + obj2.m2) / 2.0;

}

int main() {

Class1 obj1(80);

RSCOEP Department of Computer Engineering Prof.S.U.Puri 62

Class2 obj2(90);

float avg = average(obj1, obj2);

cout << "Average: " << avg << endl;

return 0;

}

23. Write any two characteristics of static data member. Write C++
program to count number of objects created with the help of static data
member.

6 S-22

Two Characteristics of Static Data Member

Shared by all objects: A static data member is shared by all objects of a
class. There's only one copy of the static member, regardless of the number
of objects created.

Initialized outside the class: A static data member must be defined and
initialized outside the class, usually in the global scope. This is because
static members belong to the class itself, not to individual objects.

#include <iostream>

using namespace std;

class MyClass {

public:

static int count; // Static data member to count objects

MyClass() {

count++; // Increment count when an object is created

}

static void displayCount() {

cout << "Number of objects created: " << count << endl;

}

};

RSCOEP Department of Computer Engineering Prof.S.U.Puri 63

int MyClass::count = 0; // Initialization of static member

int main() {

MyClass obj1, obj2, obj3;

MyClass::displayCount(); // Display the count of objects

return 0;

}

24. State the rules for writing destructor function 4 W-19

Rules for Writing Destructor Functions in C++

 Name: The destructor has the same name as the class, preceded by a
tilde (~). For example, for a class named MyClass, the destructor would
be ~MyClass().

 Arguments and Return Type: A destructor takes no arguments and
returns no value.

 Access Specifier: Destructors are typically declared in the public section
of a class, but they can also be declared in private or protected sections.

 Automatic Invocation: The destructor is called automatically when an
object goes out of scope or is explicitly deleted using the delete operator.

 No Overloading: A class can have only one destructor. Overloading
destructors is not allowed.

 Order of Destruction: Destructors are called in the reverse order of
object creation.

 Virtual Destructors: For polymorphic classes (classes with virtual
functions), it's recommended to declare the destructor as virtual to
ensure correct destruction of derived class objects.

25. What is parameterized constructor? 4 W-19

A parameterized constructor is a special member function of a class that
accepts arguments when an object of the class is created. It's used to
initialize the object's data members with specific values provided as
arguments.

RSCOEP Department of Computer Engineering Prof.S.U.Puri 64

Key points:

It has the same name as the class.

It doesn't have a return type.

It can accept any number of arguments.

It is used to initialize object members with specific values.

#include <iostream>

using namespace std;

class Rectangle {

public:

int length;

int breadth;

// Parameterized constructor

Rectangle(int l, int b) {

length = l;

breadth = b;

}

int area() {

return length * breadth;

}

};

int main() {

Rectangle rect(5, 10); // Creating an object with values

cout << "Area of rectangle: " << rect.area() << endl;

return 0;

}

RSCOEP Department of Computer Engineering Prof.S.U.Puri 65

26. Write a program to declare a class ‘student’ having data members as
‘stud_name’ and ‘roll_no’. Accept and display this data for 5 students.

6 W-19

#include <iostream>

#include <string>

using namespace std;

class Student {

public:

string stud_name;

int roll_no;

Student(string name, int roll) {

stud_name = name;

roll_no = roll;

}

void display() {

cout << "Student Name: " << stud_name << endl;

cout << "Roll No: " << roll_no << endl;

}

};

int main() {

Student students[5];

string name;

int roll;

for (int i = 0; i < 5; i++) {

cout << "Enter student " << i + 1 << " name: ";

cin >> name;

RSCOEP Department of Computer Engineering Prof.S.U.Puri 66

cout << "Enter student " << i + 1 << " roll number: ";

cin >> roll;

students[i] = Student(name, roll);

}

cout << "\nStudent Details:\n";

for (int i = 0; i < 5; i++) {

cout << "Student " << i + 1 << ":" << endl;

students[i].display();

cout << endl;

}

return 0;

}

27. Describe use of static data member. 2 S-19

Static Data Member

A static data member is a class member that is shared by all objects of a
class, rather than being unique to each object. There's only one copy of the
static data member for the entire class, regardless of how many objects are
created.

Characteristics:

Shared by all objects: All instances of the class share the same copy of the
static data member.

Initialized outside the class: Unlike regular data members, static data
members must be defined and initialized outside the class definition.

Accessed using class name: You can access a static data member using the
class name and the scope resolution operator (::).

Lifetime: The static data member's lifetime is the entire program's execution.

28. Write a C++ program to find smallest number from two numbers using
friend function. (Hint : use two classes).

4 S-19

RSCOEP Department of Computer Engineering Prof.S.U.Puri 67

#include <iostream>

using namespace std;

class ClassB;

class ClassA {

private:

int num1;

public:

ClassA(int n) : num1(n) {}

friend int findSmallest(ClassA obj1, ClassB obj2);

};

class ClassB {

private:

int num2;

public:

ClassB(int n) : num2(n) {}

friend int findSmallest(ClassA obj1, ClassB obj2);

};

int findSmallest(ClassA obj1, ClassB obj2) {

return (obj1.num1 < obj2.num2) ? obj1.num1 : obj2.num2;

}

int main() {

int num1, num2;

cout << "Enter two numbers: ";

cin >> num1 >> num2;

ClassA obj1(num1);

RSCOEP Department of Computer Engineering Prof.S.U.Puri 68

ClassB obj2(num2);

int smallest = findSmallest(obj1, obj2);

cout << "Smallest number: " << smallest << endl;

return 0;

}

29. Write a C++ program to declare a class student with members as roll
no, name and department. Declare a parameterised constructor with
default value for department as ‘CO’ to initialize members of object.
Initialize and display data for two students.

6 S-19

#include <iostream>

#include <string>

using namespace std;

class Student {

public:

int roll_no;

string name;

string department;

// Parameterized constructor with default value for department

Student(int r, string n, string d = "CO") {

roll_no = r;

name = n;

department = d;

}

void display() {

cout << "Roll No: " << roll_no << endl;

cout << "Name: " << name << endl;

RSCOEP Department of Computer Engineering Prof.S.U.Puri 69

cout << "Department: " << department << endl;

}

};

int main() {

int roll;

string name, dept;

// Student 1 with default department

cout << "Enter roll number for student 1: ";

cin >> roll;

cout << "Enter name for student 1: ";

cin >> name;

Student s1(roll, name);

// Student 2 with specified department

cout << "\nEnter roll number for student 2: ";

cin >> roll;

cout << "Enter name for student 2: ";

cin >> name;

cout << "Enter department for student 2: ";

cin >> dept;

Student s2(roll, name, dept);

cout << "\nStudent 1 Details:\n";

s1.display();

cout << "\nStudent 2 Details:\n";

s2.display();

RSCOEP Department of Computer Engineering Prof.S.U.Puri 70

return 0;

}

30. Write any two characteristics of destructor. 2 W-18

Two characteristics of a destructor:

Automatically invoked: A destructor is called automatically when an object
goes out of scope or is explicitly deleted using the delete operator. It is not
called manually.

No return type or parameters: A destructor has no return type and cannot
accept any parameters. Its sole purpose is to perform cleanup operations
before an object is destroyed.

31. Give output for following code:

class student

{

int roll no;

char name [14];

} s[6];

void main()

{ cout < <sixeof(s);

}

2 W-18

108

32. Describe use of static data member in C++ with example. 4 W-18

Static Data Member in C++

A static data member is a class member that is shared by all objects of a
class. There's only one copy of the static member, regardless of the number
of objects created. It's declared within the class using the static keyword but
is initialized outside the class.

Characteristics:

 Shared by all objects of a class.

RSCOEP Department of Computer Engineering Prof.S.U.Puri 71

 Only one copy exists for the entire class.

 Initialized outside the class.

 Can be accessed using the class name or an object of the class.

 Lifetime is the entire program.

33. Write a C++ program to find greatest number among two numbers
from two different classes using friend function.

4 W-18

#include <iostream>

using namespace std;

class ClassB;

class ClassA {

private:

int num1;

public:

ClassA(int n) : num1(n) {}

friend int findGreatest(ClassA obj1, ClassB obj2);

};

class ClassB {

private:

int num2;

public:

ClassB(int n) : num2(n) {}

friend int findGreatest(ClassA obj1, ClassB obj2);

};

int findGreatest(ClassA obj1, ClassB obj2) {

return (obj1.num1 > obj2.num2) ? obj1.num1 : obj2.num2;

RSCOEP Department of Computer Engineering Prof.S.U.Puri 72

}

int main() {

int num1, num2;

cout << "Enter two numbers: ";

cin >> num1 >> num2;

ClassA obj1(num1);

ClassB obj2(num2);

int greatest = findGreatest(obj1, obj2);

cout << "Greatest number: " << greatest << endl;

return 0;

}

34. Write a C++ program to accept array of five elements, find and display
smallest number from an array.

4 W-18

#include <iostream>

using namespace std;

int main() {

int arr[5];

cout << "Enter 5 elements: ";

for (int i = 0; i < 5; i++) {

cin >> arr[i];

}

int smallest = arr[0];

for (int i = 1; i < 5; i++) {

if (arr[i] < smallest) {

smallest = arr[i];

RSCOEP Department of Computer Engineering Prof.S.U.Puri 73

}

}

cout << "Smallest number: " << smallest << endl;

return 0;

}

	Unit 2:Functions and Constructors

