
 1

https://shikshamentor.com/object-oriented-

programming-using-c-for-msbte-3k-scheme/

312304 - OOP Using C++ (Sem III)

As per MSBTE’s K Scheme

CO / CM / IF

 Unit -1 Principles of Object Oriented Programming Marks - 14

S.N MSBTE Board Asked Questions Marks
Exam
Year

1.
State any two features of object oriented programming 2 S-24

State the features of object oriented programming. 4 S-23

Features of object oriented programming:

1. Abstraction

2. Encapsulation

3. Inheritance

4. Polymorphism

2. Define class and object 2
S-24
S- 19

Class:

Class is a user defined data type that combines data and functions together. It is a collection of

objects of similar type.

Object:

It is a basic run time entity that represents a person, place or any item that the program has to handle.

https://shikshamentor.com/object-oriented-programming-using-c-for-msbte-3k-scheme/
https://shikshamentor.com/object-oriented-programming-using-c-for-msbte-3k-scheme/

 2

3. State the use of Memory management operator and explain it with
example.

2 S-24

 Memory Management operators are new and delete.

Uses of Memory management operators:

• Dynamic memory allocation in C++ refers to performing memory allocation

manually by a programmer.

• Use of dynamically allocated memory is to allocate memory of variable size, which is not

possible with compiler allocated memory except for variable-length arrays.

• The most important use is the flexibility provided to programmers.

• We are free to allocate and deallocate memory whenever we need it and whenever we don’t need

it anymore.

Explanation of new and delete:

new operator: This operator is used to allocate memory dynamically at runtime. It takes the data

type of the object you want to create as an argument and returns a pointer to the newly allocated

memory block.

delete operator: This operator is used to deallocate memory that was previously allocated using

new operator. It takes a pointer to the memory block you want to free as an argument.

Example:

int* numbers = new int[10]; for (int i = 0; i < 10;
i++)
{

numbers[i] = i * i;

}

delete [] numbers;

 3

4. Develop a program to find factorial of given number using for loop 4 S-24

 #include<iostream> using
namespace std; int main()

{
int no, fact=1, i; cout<<"Enter number:";
cin>>no; for(i=1;i<=no;i++)
{

fact=fact*i;
}
cout<<"Factorial ="<<fact;

}
}

5. Develop a program to declare a class student the data members are rollno,
name and marks, accept and display data for one object of class student

4 S-24

 #include<iostream> using
namespace std; class student
{
int rollno;
char name[20]; float marks;
public:
void accept(); void display();
};
void student::accept()
{

cout<<"\nEnter data of student:"; cout<<"\nRoll number:";
cin>>rollno; cout<<"\nName:";
cin>>name; cout<<"\nMarks:";
cin>>marks;
}
void student::display()
{
cout<<"\nStudents data is:"; cout<<"\nRoll
number:"<<rollno; cout<<"\nName:"<<name;
cout<<"\nMarks:"<<marks;
}

int main()
{
student S; S.accept();
S.display();

}

 4

6. With suitable example describe structure of C++ program. 4 S-24

Explain the structure of C++ program. 4 S-23

Describe structure of c++ program. 4 W-22

Describe structure of C++ program with diagram. 3 S-19

With suitable diagram describe structure of C++ program. 4 W-18

 class MyClass // The class
{
public: // Access specifier
int myNum; // Attribute (int variable)
string myString; // Attribute (string variable)
};
int main()
{
MyClass myObj; // Create an object of MyClass
// Access attributes and set values
myObj.myNum = 15; myObj.myString = "Some
text";
// Print attribute values
cout << myObj.myNum << "\n"; cout <<
myObj.myString;
return 0;

}

7. Develop a C++ program to add 3 *3 matrices and display addition 6 S-24

 #include<iostream> using

namespace std; int main()

{

int a[3][3],b[3][3],c[3][3];

int i,j;

cout<<"\n Enter the matrix for A:";

 5

 for(i=0;i<3;i++)

{

for(j=0;j<3;j++)

{

cin>>a[i][j];

}

}

cout<<"\n Enter the matrix for B:";
for(i=0;i<3;i++)
{

for(j=0;j<3;j++)

{

cin>>b[i][j];

}
}

for(i=0;i<3;i++)
{
for(j=0;j<3;j++)
{
c[i][j]=a[i][j]+b[i][j];
}
}
cout<<"\n The addition of two matrices A and B is:";
for(i=0;i<3;i++)

{
cout<<"\n"; for(j=0;j<3;j++)

{
cout<<"\t"<<c[i][j];

}

}

}

 6

8. Differentiate between C and C++(Any two marks). 2 W-23

 C C++

C supports the procedural
style programming.

C++ supports both
procedural and object
oriented.

Data is less secured in C.

In C++, you can use
modifiers for class members
to make it inaccessible for
outside users.

C follows the top-down approach.
C++ follows the bottom-
up approach.

C does not support
function overloading.

C++ supports
function overloading.

In C, you can't use functions
in structure.

In C++, you can use functions
in structure.

C does not support reference
variables.

C++ supports reference variables.

In C, scanf() and printf() are mainly
used for input/output.

C++ mainly uses stream cin and cout to
perform input and output operations.

Operator overloading is not possible in
C.

Operator overloading is possible in
C++.

C programs are divided into
procedures and modules.

C++ programs are divided into
functions and classes.

C++ programs are divided into
functions and classes.

C++ supports the feature of
namespace.

C does not support the inheritance. C++ supports inheritance.

 7

9. Give the syntax of class. 2 W-23

 Syntax:
class class_name
{
private:
variable declarations; function

declarations; public:

variable declarations;
function declarations;

};

10. Explain any four applications of OOP. 2 W-23

State any Four application of OOP. 2 W-22

Write any four applications of OOP.(Repeat) 2 S-22

Write the applications of object oriented programming. 4 W-19

 Applications of object-oriented programming are:

1) Real time systems

2) Simulation and modeling

3) Object-oriented databases

4) Hypertext, hypermedia and expertext

5) AI and expert systems

6) Neural networks and parallel programming

7) Decision support and office automation systems

CIM/CAM/CAD systems

 8

11. Explain the input operator in C++ 2 W-23

 The input operator, commonly known as the extraction operator and denoted by >>, is a

powerful tool in C++ used for reading data from input streams. It works in conjunction with the

standard input stream object cin and allows you to easily retrieve various types of data from the

user or any other input source.

Operator: >> (extraction operator)

Purpose: Used to read data from input streams.

Example:

int number;

cin >> number;

12. Explain the rules for naming variables in C++(Any four points) 4 W-23

 9

 The general rules for naming variables are:

• Variable names can contain letters, digits and underscores.

• Variable names must begin with a letter or an underscore (_).

• Variable names are case sensitive (myVar and myvar are different variables).

• Variable names cannot contain whitespaces or special characters like !, #, %, etc.

• Reserved words (like C++ keywords, such as int) cannot be used as variable names.

Choose variable names that are descriptive and reflect the purpose or meaning of the variable. This
helps improve code readability and makes it easier for others (including yourself) to understand
the code later.

13. Write a C++ program to find out whether the given number is

even or odd(Taking input from keyboard)

4 W-23

 #include <iostream>
using namespace std;
 int main() {

int number;

cout << "Enter an integer: "; cin >> number;

if (number % 2 == 0) {

cout << number << " is even." << endl;

} else {

cout << number << " is odd." << endl;

}

return 0;

}

 10

14. Write a C++ program to find the area of rectangle using class rectangle

which has following details:

i) Accept length and breadth from user.

ii) Calculate the

area iii)Display the

result

4 W-23

 #include<iostream>

#include<conio.h> using namespace

std; class rectangle

{
private:
int length; int breadth;

public:

void accept()
{
cout<<"Enter length & breadth: \n"; cin>>length;
cin>>breadth;
}
void area()
{
int area; area=length*breadth;
cout<<"\nArea of rectangle:"<<area;
}
};
int main()
{
rectangle r; r.accept();
r.area();
getch();

}

 11

15. Demonstrate the static and dynamic initialization of variable. 2 S-23

 Static Initialization

In static initialization, the value of a variable is assigned at compile time. This means the

value is fixed and cannot be changed during program execution.

#include <iostream> int main() {

int x = 10; // Static initialization

const double pi = 3.14159; // Another example of static initialization

std::cout << x << std::endl; std::cout << pi

<< std::endl; return 0;

}

Dynamic Initialization

In dynamic initialization, the value of a variable is assigned at runtime. This allows for flexibility

as the value can be determined based on user input, calculations, or other factors.

#include <iostream> Using

namespace std; int main() {

int x; // Declaration without initialization cout <<

"Enter a value for x: ";

cin >> x; // Dynamic initialization

cout << "The value of x is: " << x <<:endl; return 0;

 12

16. Write the syntax for declaration of a class. 2 S-23

 Features of object oriented programming:
1. Abstraction
2. Encapsulation
3. Inheritance

Polymorphism
17. Write a program to print first n natural numbers and their sum using for

loop.
4 S-23

 // C++ program to find sum of first n natural numbers. #include <iostream> using

namespace std;

// Returns sum of first n natural numbers
int findSum(int n)
{ int sum = 0;

for (int i = 1; i <= n; i++) sum = sum + i;

return sum;

}

// Driver code int main()

{

int n = 5;

cout << findSum(n); return 0;

}

 13

18. State the use of scope resolution operator and explain it with example. 6 S-23

Describe use of scope resolution operator with example. 2 W-22

Explain use of scope resolution operator. 2 W-19

State use of scope resolution operator.(Repeat) 2 S-19

 The scope resolution operator, represented by two colons (::), is primarily used in C++ to
manage the visibility and access of elements within different program scopes. Here's a
breakdown of its functionalities with examples:

Accessing Global Elements:

1. When a local variable or function shares the same name with a global one, the local

element takes precedence within its scope.

2. To access the global element from within the local scope, you use the scope resolution

operator with the global variable/function name.

int value = 10; // Global variable void

someFunction() {

int value = 20; // Local variable

 14

 std::cout << "Local value: " << value << std::endl; std::cout <<

"Global value: " << ::value << std::endl;

}

int main() { someFunction();

return 0;

}

outputs:

Local value: 20
Global value: 10

Accessing Class Members:

1. The scope resolution operator is used to access members (variables or

functions) of a class.

2. You use the class name followed by the scope resolution operator and then the

member name.

class MyClass
{

public:
int num = 5;

void printNum() {

std::cout << "Member variable num: " << num << std::endl;
}

};
int main() { MyClass obj;

obj.printNum(); // Accessing member function
std::cout << "Member variable num using scope resolution: " << obj::num

<< std::endl; return 0;
}

outputs:

Member variable num: 5

 15

 Member variable num using scope resolution: 5

Resolving Namespace Conflicts:

1. Namespaces are used to group related elements and avoid naming conflicts.

2. The scope resolution operator can be used to access elements from a specific

namespace if there's a conflict with the current scope.

Consider a scenario where you have two namespaces Math and Science, both containing
a function named calculate. To call Science::calculate from the main scope, you'd use:

using namespace Math; // This could cause conflict int main() {

Science::calculate(); // Using scope resolution to avoid conflict return 0;
}

In essence, the scope resolution operator provides a way to explicitly specify the context (global,
class, or namespace) when referring to an identifier, ensuring clarity and avoiding naming conflicts
in your code.

19. Explain user defined datatype with example. 2 W-22

 User-Defined DataTypes
The data types that are defined by the user are called the derived datatype or user- defined
derived data type. These types include:

 Class
 Structure
 Union
 Enumeration

Typedef
20. Develop a c++ program to print Fibonacci series. 4 W-22

 #include <iostream> using

namespace std; int main() {

int n, t1 = 0, t2 = 1, nextTerm = 0; cout << "Enter the

number of terms: "; cin >> n;

cout << "Fibonacci Series: ";

https://www.geeksforgeeks.org/c-classes-and-objects/
https://www.geeksforgeeks.org/structures-c/
https://www.geeksforgeeks.org/union-c/
https://www.geeksforgeeks.org/enumeration-enum-c/
https://www.geeksforgeeks.org/typedef-in-cpp/

 16

 for (int i = 1; i <= n; ++i) {

// Prints the first two terms. if(i == 1) {

cout << t1 << ", "; continue;

}

if(i == 2) {

cout << t2 << ", "; continue;

}

nextTerm = t1 + t2; t1 = t2;

t2 = nextTerm;

cout << nextTerm << ", ";

}

return 0;

}

Output

Enter the number of terms: 10
Fibonacci Series: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,

21. Develop a c++ program to print sum of 10 no. using array. 4 W-22

 #include <iostream> using

namespace std; int main()

{

int arr[100],i,size,sum=0;

cout<<"Enter the number of elements: ";

 17

 cin>>size;//Accepting array size cout<<"Enter the value of

elements: "<<endl; for(i=0;i<n;i++)

{

cin>>arr[i]; //Accepting values

}

for(i=0;i<n;i++)

{

sum=sum+arr[i];//Calculating sum

}

cout<<"Sum of elements in an array is: "<<sum; return 0;

}

Output:

Enter the number of elements: 5 Enter the

value of elements:

7

10

3

12

5

Sum of elements in an array is: 37

22. Define class book with following Data member and member function

for 10 book

Data Member Member Function

1. B - name → getdata ()

6 W-22

 18

 2. B - author → put data ()

3. B - price

 #include <iostream> using

namespace std; class book

{

char name[10],author[10]; float price;

public:

void getdata()

{

cout<<"Enter the Name of the book "; cin>>name;

cout<<"Enter the author of book "; cin>>author;

cout<<"Enter the price of book "; cin>>price;

}

void putdata()

{

cout<<"The book details are: "; cout<<"\n Book

Name: "<<name; cout<<"\n Book

Author "<<author; cout<<"\n Book Price

 "<<price;

}
};

int main() { book B[10];

for(int i=1;i<=10;i++) B[i].getdata();

for(int i=1;i<=10;i++) B[i].putdata();

return 0;
}

 19

23. List two memory management operators available in C++. Also state its

use.
2 S-22

 In C++, memory management is primarily handled by two operators:

new: This operator is used for dynamically allocating memory at runtime. It takes the
data type as an argument and returns a pointer to the newly allocated memory block.

Syntax: data_type* pointer_variable = new data_type;

Example:

C++

int* ptr = new int; // Allocate memory for an integer
*ptr = 42; // Assign value to the allocated memory

delete: This operator is used to deallocate memory that was previously allocated using
new. It takes a pointer to the memory block you want to free as an argument.

Syntax: delete pointer_variable;

Example:

C++

delete ptr; // Deallocate memory pointed to by ptr

 20

 Features of object oriented programming are:

1. Objects: Objects are the fundamental building blocks of OOP. They represent real-

world entities with attributes (data) and methods (functions) that define their

behavior.

2. Classes: A class that defines the properties and methods of an object. A class that

creates multiple objects of the same kind.

3. Encapsulation: Encapsulation is the process of bundling data and methods together into a

single unit, protecting the data from direct access outside the object. This ensures data integrity

and promotes modularity.

4. Inheritance: Inheritance allows new classes to inherit properties and methods

from existing classes. This promotes code re-usability and simplifies the creation of

hierarchical relationships between objects.

5. Polymorphism: Polymorphism allows objects of different classes to respond

differently to the same message. This makes code more flexible and adaptable.

6. Abstraction: Abstraction refers to the user’s interaction with a subset of an object’s

characteristics and operations.

7. Dynamic Binding: In dynamic binding, the code to be executed in response to the function

call is decided at runtime. Because dynamic binding is flexible, it avoids the drawbacks of static

binding, which connected the function call and definition at build time.

Message Passing: Objects communicate with one another by sending and receiving information.
A message for an object is a request for the execution of a procedure and therefore will invoke a
function in the receiving object that generates the desired results. Message passing involves
specifying the name of the object, the name of the function, and the information to be sent.

25. Describe concept of type casting using suitable example. 4 S-22

 Type casting in C++ refers to the process of converting a value from one data
type to another. This can be useful in various scenarios, such as:

 Performing operations on different data types: Sometimes, you might

 21

 need to add an integer and a floating-point number. In such cases, type casting allows

you to explicitly convert one type to the other to enable the operation.

 Passing arguments to functions: If a function expects a specific data type as input, you

can cast a variable of a different type to match the function's requirement.

C++ offers two main types of type casting:

1. Implicit Casting (Automatic Conversion):

o The compiler automatically performs implicit casting when it encounters

mixed data types in an expression.

o Usually, the compiler converts the smaller data type (like int) to the larger one

(like float) to avoid data loss.

int x = 10;float y = x + 3.14f; // Implicit conversion of int to float

In this example, x (an integer) is implicitly converted to a float before adding to the float
value 3.14f.

2. Explicit Casting (Forced Conversion):

You can explicitly tell the compiler to convert a value from one type to another using
cast operators.

C++ provides different cast operators for various casting scenarios:

static_cast: This is the most commonly used cast operator for safe conversions
between compatible types. It performs compile-time type checking.

double num = 3.14159;int casted_num = static_cast<int>(num); // Truncation of
decimal partstd::cout << casted_num << std::endl; // Output: 3

dynamic_cast: This operator is used for runtime type checking, typically when dealing
with inheritance hierarchies. It's useful for downcasting (converting a base class
pointer to a derived class pointer).

class Animal
{ /* ... */ };
class Dog : public Animal { /* ... */ };

Animal* animal_ptr = new Dog;

Dog* dog_ptr = dynamic_cast<Dog*>(animal_ptr); // Safe downcasting if animal_ptr points to a Dog
object

 22

const_cast: This cast removes the const-ness of a variable or expression. Use with
caution as it can lead to unexpected behavior if you modify a constant value.

 Explicit casting can sometimes lead to data loss (truncation) if the target type can't hold

the value of the source type.

Use type casting judiciously and consider alternative approaches like using appropriate data types
or functions that handle mixed data types.

26. Write a C++ program to find and display the smallest number of an array. 4 S-22

 #include <iostream> using

namespace std; int main() {

int arr[100]; // Array to store numbers (change size as needed) int n;

cout << "Enter the number of elements in the array: "; cin >> n;

cout << "Enter the elements of the array: "; for (int i = 0; i

< n; ++i) {

cin >> arr[i];

}

// Find the smallest element int smallest =

arr[0];

for (int i = 1; i < n; ++i) { if (arr[i] <

smallest) { smallest = arr[i];

}

}

cout << "The smallest element in the array is: " << smallest << endl;

return 0;

}

 23

27 State the difference between OOP and POP 2 W-19

Differentiate between OOP and POP 2 W-18

 Sr.

No.

OBJECT ORIENTED

PROGRAMMING (OOP)

PROCEDURE ORIENTED
PROGRAMMING (POP)

1. Focus is on data rather than
procedure.

Focus is on doing
things (procedure).

2. Programs are divided into
multiple objects.

Large programs are

divided into multiple

functions.

 3. Data is hidden and cannot be
accessed by external functions

Data move openly around the
system from function to
function.

 4. Objects communicate with each
other through function

Functions transform data
from one form to another by
calling each other

 5. Employs bottom-up approach
in program design

Employs top-down approach
in program design.

 6. Object oriented approach

is used in C++ language.

Procedure oriented

approach is used in

C language.

 24

28 What is a class? Give its example. 2 W-19

 Class: Class is a user defined data type that combines data and functions together. It is a

collection of objects of similar type.

Example:

class book

{

char b_name; //Data member float price;

 //

void display() // member function

};

29 Describe memory allocation for objects. 4 W-19

Describe how memory is allocated to objects of class with suitable
diagram.

4 S-19

 The memory space for object is allocated when they are declared and not when the class is

specified. The member functions are created and placed in memory space only once when they

are defined as a part of a class definition. Since all the objects

belonging to that class use the same member functions, no separate space is

 25

 allocated for member functions. When the objects are created only space for member variable is

allocated separately for each object. Separate memory locations for the objects are essential

because the member variables will hold different data values for different objects.

Fig: Memory allocation for objects

30 Write any four benefits of OOP 4 W-19

 Benefits of OOP:

1. We can eliminate redundant code and extend the use of existing classes.

2. We can build programs from the standard working modules that communicate with one

another, rather than having to start writing the code from scratch. This leads to saving of

development time and higher productivity.

3. The principle of data hiding helps the programmer to build secure programs that cannot be

invaded by code in other parts of the program.

It is possible to have multiple instances of an object to co-exist without any

 26

 interference.

5. It is possible to map objects in the problem domain to those in the program.

6. It is easy to partition the work in a project based on objects.

7. The data-centered design approach enables us to capture more details of a model in

implementable form.

8. Object-oriented systems can be easily upgraded from small to large systems.

9. Message passing techniques for communication between objects makes the interface

descriptions with external systems much simpler.

Software complexity can be easily managed.

31 Write a program to sort an 1-d array in ascending order. 4 W-19

 #include<iostream.h>
#include<conio.h> void main()
{
int arr[20];
int i, j, temp,n; clrscr();
cout<<"\n Enter the array size:"; cin>>n;
cout<<"\n Enter array elements:";
for(i=0;i<n;i++)
{
cin>>arr[i];
}
for(i=0;i<n;i++)

{
for(j=i+1;j<n;j++)
{
if(arr[i]>arr[j])
{
temp=arr[i]; arr[i]=arr[j];
arr[j]=temp;
}
}
}
cout<<”Sorted Array:”; for(i=0;i<n;i++)
{
cout<<”\n”<<arr[i];
}
getch();

}

 27

32. State the use of cin and cout. 2 S-19

 cin: cin is used to accept input data from user (Keyboard).

cout:cout is used to display output data on screen.

33. Write a ‘C++’ program to find factorial of given number using loop. 4 S-19

 #include <iostream> using

namespace std; int main()

{
int i,fact=1,number; cout<<"Enter any

Number: "; cin>>number;

for(i=1;i<=number;i++){

fact=fact*i;

}

cout<<"Factorial of " <<number<<" is: "<<fact<<endl; return 0;

}

Output:

Enter any Number: 5 Factorial of 5 is: 120

 28

34. Describe following terms: Inheritance, data abstraction, data

encapsulation, dynamic binding.

4 S-19

 Inheritance:

Inheritance is the process by which objects of one class acquire the

properties of objects of another class.

It supports the concept of hierarchical classification. It also provides the

idea of reusability.

Data abstraction:

1. Data abstraction refers to the act of representing essential features without

including the background details or explanations.

2. Classes use the concept of abstraction and are defined as a list of

abstract attributes such as size, weight and cost and functions to operate on these attributes.

Data encapsulation:
1. The wrapping up of data and functions together into a single unit (called class)

is known as encapsulation.

2. By this attribute the data is not accessible to the outside world,

and only those functions which are wrapped in the class can access it.

Dynamic Binding:

1. Dynamic binding refers to the linking of a procedure call to be executed in

response to the call.

2. It is also known as late binding. It means that the code associated with a given

procedure call is not known until the time of the call

at run-time.

 29

35. Write a program to swap two integers using call by reference method. 6 S-19

 #include<iostream.h>

#include<conio.h> void swap(int*p,

int*q)

{

int t; t=*p;

*p=*q;

*q=t;

}

void main()

{

int a,b; float x,y;
clrscr();
cout<<"Enter values of a and b\n"; cin>>a>>b;

cout<<"Before swapping\n";

cout<<"a="<<a<<"\tb="<<b<<endl; swap(&a, &b);

cout<<"After swapping\n";

cout<<"a="<<a<<"\tb="<<b<<endl; getch();

}

 30

36. State any four object oriented languages. 2 W-18

 Object oriented programming language:

 C++

 Smalltalk

 Simula Ada
 Turbo pascal Eiffel
 C#
 Python

37. Write a C++ program to declare a class ‘circle’ with data members as

radius and area. Declare a function getdata to accept radius and putdata

to calculate and display area of circle.

4 W-18

 #include<iostream.h>
#include<conio.h>
class circle
{
float radius,area; public:
void getdata()
{
cout<<"Enter radius:"; cin>>radius;
}
void putdata()
{
area=3.14*radius*radius; cout<<"Area of
circle="<<area;
}
};

void main()
{
circle c; clrscr();
c.getdata();
c.putdata();
getch();

}

#include<iostream.h>
#include<conio.h> class addition
{
int x,y; public:

 31

addition(int,int); void display();
};

addition::addition (int x1,int y1)
{
x=x1; y=y1;
}

void addition::display()
{
cout<<"\nAddition of two numbers is:"<<(x+y);
}

void main()
{
addition a(3,4); a.display();
getch();

}
39. Write a C++ program to print multiplication table of 7. (example: 7 × 1 = 7

.....

7 × 10 = 70)

4 W-18

 #include<iostream.h>
#include<conio.h> void main()
{

int num; clrscr();
cout<<"Multiplication table for 7 is:"<<endl;
for(num=1;num<=10;num++)
{

cout<<"7 *"<<num<<"="<<7*num<<endl;

}

getch();

}

 32

40. Write a C++ program to declare a class ‘Account’ with data members as

accno, name and bal. Accept data for eight accounts and display details of

accounts having balance less than 10,000

6 W-18

 #include<iostream.h>
#include<conio.h> class Account
{
long int accno, bal; char name[10];
public:
void getdata()
{

cout<<"\nEnter account number, balance and name ";
cin>>accno>>bal>>name;
}
void putdata()
{
if(bal>10000)
{
cout<<"\nThe Account Number is "<<accno; cout<<"\nThe
Balance is "<<bal; cout<<"\nThe Name is "<<name;
}
}
};

void main()
{
Account a[8]; int i;
clrscr(); for(i=0;i<8;i++)
{
a[i].getdata();
}
for(i=0;i<8;i++)
{
a[i].putdata();

 }
getch();

}

41. Write a C++ program to find whether the entered number is even or odd. 3 W-18

 #include<iostream.h>
#include<conio.h> void main()
{

int num; clrscr();
cout<<"\nEnter a Number "; cin>>num;
if(num%2==0)

{

cout<<"\nEntered number is even";

}

else

{

cout<<"\nEntered number is odd";

}

getch();

}

Thank You

https://shikshamentor.com/object-oriented-programming-using-c-for-

msbte-3k-scheme/

Visit

https://shikshamentor.com/

https://shikshamentor.com/object-oriented-programming-using-c-for-msbte-3k-scheme/
https://shikshamentor.com/object-oriented-programming-using-c-for-msbte-3k-scheme/
https://shikshamentor.com/

	Thank You
	Visit

