

https://shikshamentor.com/basic-electricalelectronics-engg-for-msbte-k-scheme/

312302 - Basic Electrical & Electronics Engg (BEE-Sem II) As per MSBTE's K Scheme CO / CM / IF / AI / AN / CW / DS

Unit VI	Sensors and Transducers M	arks - 10
S. N.	MSBTE Board Asked Questions	Marks
1.	 Which of the following is not a characteristic of an ideal transducer? a) High dynamic range b) Low linearity c) High repeatability d) Low noise 	1M
	Explanation: An ideal transducer should show high linearity. A linear system should produce exact output according to input.	
2.	 Which of the following represent active transducer? a) Strain gauge b) Thermistor c) LVDT d) Thermocouple Answer: d) Thermocouple Explanation: Active transducers are self-generating type, they don't require external power to work while passive transducers require external power to work.	1M

	Which transducer is known as 'self-generating transducer'?	
	a) Active transducer	
	b) Passive transducer	
	c) Secondary transducer	
3.	d) Analog transducer	414
		1M
	Answer: a) Active transducer	
	Explanation: The name self-generating transducer is due to its	
	property of working without the use of external power.	
	Which of the following is an analog transducer?	
	a) Encoders	
	b) Strain gauge	
	c) Digital tachometers	
	d) Limit switches	
4.		1 M
	Answer: b) Strain gauge	
	Explanation: Analog transducers convert physical quantity to	
	analog signals while digital transducers convert physical	
	quantity to digital signals. Strain gauge is an example of an	
	Analog transducer.	
	What is the principle of operation of LVDT?	
	a) Mutual inductance	
	b) Self-inductance	
	c) Permanence	
	d) Reluctance	
5.	Answer: a) Mutual inductance	1 M
	Explanation: Linear variable differential transformer (LVDT)	1 141
	is a type of transformer used for measuring displacement, and	
	it has the same principle of operation of transformer.	

	Which of the following can be measured using Piezo-electric	
	transducer?	
	a) Velocity	
	b) Displacement	
	c) Force	
6.	d) Sound	1 M
		1 IVI
	Answer: c) Force	
	Explanation: Piezo-electric crystals produces an electric signal	
	when pressure applied. Examples are quartz, Rochelle salt.	
	That is, it converts force into electric signals.	
	Capacitive transducer is used for?	
	a) Static measurement	
	b) Dynamic measurement	
	c) Transient measurement	
_	d) Both static and dynamic	
7.		1 M
	Answer: b) Dynamic measurement	
	Explanation: Capacitive transducers convert measurant into	
	changes in capacitance. Change in capacitance is caused by	
	change in dielectric or change in distance between plates.	
	Which of the following is used in photo conductive cell?	
	a) Selenium	
	b) Quartz	
	c) Rochelle salt	
	d) Lithium sulphate	
8.	Answer: a) Selenium	1M
	Explanation: Photo conductive action is the property of	
	reduction of resistance when exposed to light. Selenium shows	
	photoconductive action.	

	What are transducers?	
	a) They convert power from one form to another	
	b) They convert work from one form to another	
	c) They convert work to power	
	d) They convert energy from one form to another	
9.		1M
	Answer: d) They convert energy from one form to another	
	Explanation: Transducer are devices that convert energy from	
	one form to another. This energy can be either mechanical	
	energy, light energy, heat energy or any other forms of energy.	
	Active transducer do not require any type of additional power	
	source for an operation.	
	a) True	
	b) False	
10.	Answer: a) True	1M
	Explanation: Active transducers do not require any additional	
	power source for converting the energy from one form to	
	another as they work on the principle of energy conversion.	
	One such example of active transducer is thermocouple.	
	What type of energy conversion does a piezoelectric	
	transducer perform?	
	a) It converts mechanical energy to sound energy	
	b) It converts sound energy to mechanical energy	
	c) It converts mechanical energy to electrical energy	
	d) It converts electrical energy to mechanical energy	
11.		
	Answer: c) It converts mechanical energy to electrical energy	1M
	Explanation: A piezoelectric transducer converts mechanical	
	energy to electrical energy. They are generally used to detect a	
	knock or any impulsive force. They are also used in electronic	
	drum pads to detect the impulse provided by the drumsticks.	

	The IC LM35 is used as which type of sensor?	
	a) Pressure sensor	
	b) Temperature sensor	
	c) Light sensor	
	d) Mechanical sensor	
40		
12.	Answer: b)) Temperature sensor	1M
	Explanation: The LM35 IC manufactured by Texas Instruments	
	is used as a temperature sensor. The output voltage generated	
	by this IC is linearly proportional to the temperature in	
	Centigrade. The output voltage is directly proportional to the	
	temperature.	
	What is the range of frequency of the waves produced by the	
	Ultrasonic transducer?	
	a) 20 Kilohertz to several Gigahertz	
	b) 1 Kilohertz to several Gigahertz	
	c) 40 Kilohertz to several Megahertz	
10	d) less than 20 Kilohertz	
13.		1M
	Answer: a) 20 Kilohertz to several Gigahertz	
	Explanation: Ultrasonic transducers produce frequency	
	ranging from 20 Kilohertz to several Gigahertz. Ultrasounds	
	have a wide range of application in many fields, but majorly	
	they are used for measuring the distance of objects.	
	What is the full form of LVDT with respect to displacement	
	transducer?	
	a) Linear variable differential temperature	
	b) Linear variable differential transformer	
	c) Liquid visible differential transformer	
14.	d) Liquified visible differential transformer	1M
	Answer: b) Linear variable differential transformer	
	Explanation: LVDT stands for Linear variable differential	
	transformer. It is a displacement transducer that converts	

	rectilinear motion to electric signals. They are used widely due	
	to their robustness.	
	What is the effect on properties of LDR when light falls on it?	
	a) Its resistance remains same	
	b) Its resistance changes	
	c) Its capacitance changes	
	d) Its inductance changes	
15	Answer: b) Its resistance changes	
10.	Explanation: When light falls on LDR (Light dependant	1M
	resistor) its resistance changes. It is inversely proportional to	
	the intensity of light. When light falls on LDR, the resistance	
	decreases and more current starts to flow through it. It is used	
	to measure the intensity of light.	
	What is measured by a hall effect transducer?	
	a) Electric flux	
	b) Electric Field	
	c) Magnetic field	
	d) Temperature	
16.	Answer: c) Magnetic field	1M
	Explanation: Hall effect transducers or Hall effect sensor is	
	used for measuring the magnitude of the magnetic field. The	
	output voltage produced by the sensor is directly proportional	
	to the strength of the magnetic field passing through it.	
	Which of the following represents the application of inductive	
	transducers?	
	a) Displacement measurement	
	b) Thickness measurement	
17.	c) Both displacement and thickness measurement	1 M
	d) None of the mentioned	1 141
	Answer: c) Both displacement and thickness measurement	
	Explanation: Inductive transducers can be used for measuring	
	displacement and thickness of thin plate etc.	

	Inductive potentiometers are used to measure	
	a) Voltage	
	b) Current	
10	c) Displacement	
18.	d) None of the mentioned	1M
	Answer: c) Displacement	
	Explanation: It has same function as linear potentiometers and	
	is used for measuring displacement.	
	Capacitive transducers can be used by	
	a) Measuring change in distance between plates	
	b) Measuring change in area of plates	
	c) Change in a dielectric material	
10	d) All of the mentioned	
19.		1M
	Answer: d) All of the mentioned	
	Evaluation: Canacitance of a material is affected by area and	
	distance of sonaration of platos and dielectric material	
	distance of separation of plates and dielectric material.	
	Capacitive transducers cannot be used as strain gauges.	
	a) True	
	b) False	
20		
20.	Answer: b) False	1M
	Explanation: Strain to be measured is applied to parallel plates	
	of a capacitor and total displacement change will be	
	proportional to strain.	
	Which of the following is correct for the capacitive transducer?	
	a) Capacitive strain gauges	
	b) Capacitive tachometers	
21	c) Capacitive pressure transducer	
21.	d) All of the mentioned	1M
	Answer: d) All of the mentioned	
	Explanation: Capacitive transducers find application in	

	measurement of both strain, pressure and angular	
	displacement. Hence all of the mentioned can be treated as	
	application of capacitive transducer.	
	For a material capacitance increases with	
	a) Decrease in area of plates, all other factors constant	
	b) Increase in distance between plates, all other factors	
	constant	
	c) Decrease in distance between plates, all other factors	
	constant	
	d) None of the mentioned	
22	Answer: c) Decrease in distance between plates, all other	
22.	factors constant	1M
	Explanation: Capacitance can be represented as $C=\epsilon_0\epsilon_r A$ / d	
	Where,	
	ε _r represents dielectric constant	
	A is the area of plate	
	d is the distance between plates.	
	Which of the following quantities cannot be measured by	
	capacitive transducers?	
	a) Displacement	
	b) Speed	
	c) Moisture	
	d) None of the mentioned	
	Answer: d) None of the mentioned	
23.	Explanation: Capacitive transducer finds application in	1M
	measuring almost all quantities like displacement, thickness,	
	moisture speed etc.	

	Thermometers are not possible using a capacitive transducer.	
	a) True	
	b) False	
24		
21.	Answer: b) False	1 M
	Explanation: Capacitive transducers can be used to measure	
	temperature in a way similar to moisture measurement.	
	Who invented the piezoelectric effect?	
	a) Mary Elizabeth Barber	
	b) Christian Doppler	
	c) Marie curie and Pierre curie	
25.	d) Pierre curie and Jacques curie	
-0.	Answer: d) Pierre curie and Jacques curie	1M
	Explanation: Piezoelectric effect was first invented and	
	explained by curie brothers, Pierre curie and Jacques curie in	
	1980.	
	Which of the following represents piezoelectric materials?	
	a) ADP	
	b) Quartz	
	c) Bernilite	
	d) All of the mentioned	
26.		1 M
	Answer: d) All of the mentioned	
	Explanation: Quartz, ADP (Ammonium dihydrogen	
	Phosphate), and bernilite are examples of piezoelectric	
	materials.	
	Which of the following quantities cannot be measured using	
	piezoelectric transducers?	
27.	a) Pressure	
	b) Strain	1 M
	c) Acceleration	TIM
	d) None of the mentioned	

	Answer: d) None of the mentioned	
	Explanation: Piezoelectric transducers can be used to measure	
	a wide range of quantities like pressure, acceleration, strain	
	displacement etc.	
	In piezoelectric strain transducer voltage developed is	
	to strain applied.	
	a) Directly proportional	
	b) Inversely proportional	
	c) Equal	
28	d) Independent	
201		1 M
	Answer: a) Directly proportional	
	Explanation: For a piezoelectric strain transducer, as the	
	strain applied increases output voltage also increases.	
	Photoelectric devices are sensitive to all wavelength.	
	a) True	
	b) False	
29.	Answer: b) False	1M
	Explanation: Photoelectric devices are sensitive to certain	
	wavelength only hence they should be calibrated before every	
	use.	
	In photo emissive transducers, electrons are attracted by	
	a) Cathode	
	b) Anode	
30.	c) Grid	
	d) Body	1M
	Answer: b) Anode	
	Explanation: In photo emissive transducers, electrons emitted	
	by the cathode are attracted by anode plates.	
21	The quantity to be measured by an instrumentation system is	
91		

	a) Measurement	
	b) Measurand	
	c) Signal	
	Answer: b) Measurand Explanation: The quantities that can be measured are called as physical quantityor measurand.	
	LVDT is a	
	a) Active	
	c) Hybrid	
	Answer: h) Passive	
32.		1 1 1
	Explanation: A passive transducer is an externally powered	1 M
	transducer. This device cannot convert a physical signal into	
	an electrical signal on its own to another energy source, the	
	passive element. When connected, it transforms the motion by	
	the fluctuations generated from the power source.	
	Which of the following materials can be used as	
	photoconductive transducer?	
	a) Selenium	
	b) Silicon	
22	c) Germanium	
33.	d) All of the mentioned	1M
	Answer: d) All of the mentioned	
	Explanation: Photoconductive cells are materials which	
	changes conductivity on the application of light.	
	Semiconductor layer using silicon and germanium is known	
	as	
34.	a) Photo diodes	1 M
	b) Photo junction diodes	T 141
	c) Photo material	

	d) Photo sensitive materials	
	Answer: b) Photo junction diodes	
	Explanation: Photo junction diodes are semiconductor layers	
	formed by silicon and germanium which are used in	
	photovoltaic cells.	
	Which of the following are used to form photo transistors?	
	a) Two photo diodes	
	b) Three photo diodes	
	c) Normal diodes	
35.	d) None of the mentioned	1M
	Answer: a) Two photo diodes	
	Explanation: Photo transistors are formed by placing two	
	photo diodes back to back.	
	Thermocouple is a	
	a) Primary device	
	b) Secondary transducer	
	c) Tertiary transducer	
	d) None of the mentioned	
36.		1M
	Answer: a) Primary device	
	Explanation: Thermocouple is a device which converts	
	thermal energy to electrical energy and it can be treated as a	
	primary device.	
	Operation of thermocouple is governed by	
	a) Peltier effect	
	b) Seebeck effect	
	c) Thomson effect	
	d) All of the mentioned	
37.		1M
	Answer: d) All of the mentioned	
	Explanation: Operation of thermocouple is based on three	
	major effects- Peltier, Thomson and seebeck, all describe the	
	relation between current flow and temperature between two	
	*	

	different metal.	
	Thermocouple cannot used for measurement of temperature	
	of liquid.	
	a) True	
	b) False	
38.		1 M
	Answer: b) False	1 M
	Explanation: Immersion type thermocouple can be used to	
	measure temperature of liquid, in which thermocouple is	
	immersed in liquid.	
	Active transducers are classified into	
	a) 4 types	
	b) 2 types	
	c) 6 types	
	d) 8 types	
39.	Answer: a) 4 types	1 M
	Explanation: Active transducers can be subdivided into four	1 M
	types. They are as follows:	
	• Photovoltaic	
	• Thermoelectric	
	• Piezoelectric	
	• Electromagnetic.	
	Active transducers develops	
	a) mechanical parameter	
	b) electrical parameter	
	c) chemical parameter	
	d) physical parameter	
40.		1 M
	Answer: b) electrical parameter	1 M
	Explanation: Active transducers are also known as self-	
	generating type of transducers. They develop an electrical	
	voltage or current proportional to the quantity being	
	measured.	

	How do passive transducers develop electrical signals?	
	a) using a transformer	
	b) using internal source	
	c) using external source	
	d) using a diode	
41.		1M
	Answer: c) using external source	
	Explanation: Passive transducers develop electrical signals by	
	means of an external source. They are usually known as	
	externally power driven sources.	
	Capacitive transduction involves	
	a) change in resistance	
	b) change in inductance	
	c) change in resistance	
	d) change in capacitance	
42.		
	Answer: d) change in capacitance	1M
	Explanation: In capacitive transduction, measurand involves	
	the change in the capacitance. Capacitance changes when the	
	distance between the plates is varied or by a change in the	
	dielectric.	
	In electromagnetic based transduction measurand is	
	a) converted into mechanical force	
	b) converted into electromotive force	
	c) converted into chemical force	
	d) converted into physical force	
43.		1 M
	Answer: b) converted into electromotive force	1 141
	Explanation: Electromagnetic transduction involves the	
	conversion of the measurand into electromotive force.	
	Magnetic flux is produced as a result of the relative motion	
	between the magnet and an electromagnet.	
	Inductive transduction involves	
44.	a) change in self-inductance	1M

	b) change in capacitance	
	c) change in mutual inductance	
	d) change in resistance	
	Answer: a) change in self-inductance	
	Explanation: In an inductive transduction based system,	
	measurand involves change in the self-inductance of the coil.	
	Photovoltaic transduction involves	
	a) voltage generation heat	
	b) voltage generation through sound	
	c) voltage generation through light	
45		
45.	d) voltage generation current	1M
	Answer: c) voltage generation through light	
	Explanation: In a photovoltaic transduction based system,	
	measurand is converted into voltage when the junction	
	between dissimilar elements is illuminated.	
	Analog transducers convert input into	
	a) voltage	
	b) current	
	c) digital	
	d) analog	
46.		1 M
	Answer: d) analog	1 M
	Explanation: The analog transducers convert input into analog	
	signal. The output is a continuous function of time. Strain	
	gauge, LVDT, thermistor etc are analog transducers as they	
	produce outputs which are a continuous function of time.	
	Inverse transducer converts electrical into a physical	
	quantity.	
. –	a) True	
47.	b) False	1M
	Answer: a) True	

	Explanation: An inverse transducer is used to convert an	
	electrical quantity into a physical quantity. For example,	
	loudspeaker converts electrical signal into sound signal.	
	Digital transducers produce analog output.	
	a) True	
	b) False	
48.	Answer: b) False	1M
	Explanation: Digital transducers produce digital output in	
	response to an input signal. A unique code is generated for	
	each discrete value sensed.	
	Selection of a transducer depends on the quantity being	
	measured.	
	a) True	
	b) False	
49.	Answer: a) True	1M
	Explanation: A transducer is selected based on the nature of	
	the quantity that is being measured. For example temperature	
	measurement involves the use of temperature sensors	
	whereas measurement of stress involves a strain gauge.	
	Transducers must operate under	
	a) zero electromagnetic field	
	b) constant electromagnetic fields	
	c) varying electromagnetic fields	
	d) infinite electromagnetic field	
	Answer: c) varying electromagnetic fields	
50.		1M
	Explanation: A transducer should operate under strong	
	electromagnetic fields. Generally transducers with a low value	
	of output impedance, high value of output voltage and shorter	
	cable length are not susceptible to such interference.	

	How many passive transducers are there?	
	a) 1	
	b) 3	
	c) 5	
	d) 7	
5.1	Answer: b) 3	1M
	Explanation: There are three passive transducers. They are as	
	follows:	
	Resistor	
	Capacitor	
	Inductor.	
	Smallest change which a sensor can detect is	
	a) Resolution	
	b) Accuracy	
	c) Precision	
52.	d) Scale	
		1 M
	Answer: a) Resolution	
	Explanation: Resolution is the smallest change a sensor can	
	detect.	
	Thermocouple generate output voltage according to	
	a) Circuit parameters	
	b) Humidity	
	c) Temperature	
	d) Voltage	
	uj voltage	
	Answer: c) Temperature	1 1/
	Explanation: Thermocouple is a device which is capable of	TIM
	producing output voltage according to input temperature.	

	Sensor is a type of transducer.	
	a) True	
	b) False	
53.		1 M
	Answer: a) True	1.111
	Explanation: Sensor is a device which enables measurement of	
	input value.	
	Which of the following is not an analog sensor?	
	a) Potentiometer	
	b) Force-sensing resistors	
	c) Accelerometers	
54.	d) None of the mentioned	1M
	Answer: d) None of the mentioned	
	Explanation: All of the mentioned devices are analog sensors.	
	A is thermally sensitive resistor that exhibits a large	
	change in resistance.	
	a) Thermistor	
	b) Resistance Thermometer	
	c) Thermo couple	
55.	d) Semiconductor based sensor	1M
	Answer: a) Thermistor	
	Explanation: A thermistor is a thermally sensitive resistor that	
	exhibits a large, predictable, and precise change in resistance	
	correlated to variations in temperature.	
	measures temperature by correlating the resistance of	
	the RTD with temperature.	
56.	a) Thermistor	
	b) Resistance Thermometer	
	c) Thermo couple	1M
	d) Semiconductor based sensor	
	Answer: b) Resistance Thermometer	
	Explanation: A Resistance Thermometer measures	

temperature by correlating the resistance of the RTD with	
temperature. An RTD consists of a film or, for greater	
accuracy, a wire wrapped around a ceramic or glass core.	
consists of two different metals connected at two	
points.	
a) Thermistor	
b) Resistance Thermometer	
c) Thermocouple	
d) Semiconductor based sensor	1M
Answer: c) Thermocouple	
Explanation: Thermocouple consists of two different metals	
connected at two points. The varying voltage between these	
two points reflects proportional changes in temperature.	
Which type of temperature sensor is placed in Integrated	
Circuits?	
a) Thermistor	
b) Resistance Thermometer	
c) Thermocouple	
d) Semiconductor based sensor	114
	1 M
Answer: d) Semiconductor based sensor	
Explanation: A semiconductor based temperature sensor is	
placed on Integrated Circuits. They are linear but have the	
lowest accuracy.	
Which sensor is linear and low accuracy?	
a) Thermistor	
b) Resistance Thermometer	
c) Thermocouple	
d) Semiconductor based sensor	
	1M
Answer: d) Semiconductor based sensor	
Explanation: A semiconductor based temperature sensor is	
placed on Integrated Circuits. They are linear but have the	
lowest accuracy.	
	 temperature by correlating the resistance of the RTD with temperature. An RTD consists of a film or, for greater accuracy, a wire wrapped around a ceramic or glass core. consists of two different metals connected at two points. a) Thermistor b) Resistance Thermometer c) Thermocouple d) Semiconductor based sensor Answer: c) Thermocouple consists of two different metals connected at two points. The varying voltage between these two points reflects proportional changes in temperature. Which type of temperature sensor is placed in Integrated Circuits? a) Thermistor b) Resistance Thermometer c) Thermocouple d) Semiconductor based sensor Answer: d) Semiconductor based sensor Explanation: A semiconductor based temperature sensor is placed on Integrated Circuits. They are linear but have the lowest accuracy. Which sensor is linear and low accuracy? a) Thermistor b) Resistance Thermometer c) Thermocouple d) Semiconductor based sensor Explanation: A semiconductor based temperature sensor is placed on Integrated Circuits. They are linear but have the lowest accuracy. Which sensor is linear and low accuracy? a) Thermistor b) Resistance Thermometer c) Thermocouple d) Semiconductor based sensor

	Inverse transducers are also known as	
	a) Open loop transducers	
	b) Closed loop transducers	
	c) Input transducers	
l	d) Output transducers	
60.		1M
	Answer: d) Output transducers	
	Explanation: Output transducers are which converts electrical	
	quantity to non-electrical quantity, known as inverse	
	transducers.	
	Inverse transducer is system which converts	
	a) Electrical quantity to non-electrical quantity	
	b) Non-electrical quantity to electrical quantity	
	c) Electrical quantity to electrical quantity itself	
	d) Non- electrical quantity to non-electrical quantity itself	
61.	Answer: a) Electrical quantity to non-electrical quantity	1M
	Explanation: Transducers are devices which transfers	
	measurand which will be a non-electrical quantity to electrical	
	quantity. Inverse transducers are the devices operating just	
	opposite to transducers.	
	Which of the following is an inverse transducer	
	a) Piezoelectric transducer	
l	b) LVDT	
l	c) Load cell	
	d) Bourdon tube	
	Answer: a) Piezoelectric transducer	
62.	Explanation: Piezo electric transducers are devices which are	1M
	capable of converting electrical quantity to non-electrical	
	quantity, which is an inverse transducer.	
		1

	Input transducers and inverse transducers are the same.	
	a) True	
	b) False	
63	Answer: b) False	1 M
	Explanation: Input transducers are devices which convert non-	
	electrical quantity to electrical quantity and Inverse	
	transducers are devices which convert electrical quantity to	
	non-electrical quantity.	
	Which of the following cannot act as inverse transducer?	
	a) Quartz	
	b) Barium titanate	
	c) Lead zirconate	
	d) Cadmium	
64		1M
	Answer: d) Cadmium	
	Explanation: Quartz, Barium titanate and Lead zirconate are	
	piezo electrical substances which are known for its ability to	
	act as inverse transducers.	
	Which type of transducer requires energy to be put into it in	
	order to translate changes due to the measurand?	
	a) active transducers	
	b) passive transducers	
	c) powered transducers	
	d) local transducers	
65	Answer: b) passive transducers	1 M
	Explanation: Passive transducers are transducers that require	
	energy to translate changes due to the measurand. Active	
	transducers convert one form of energy directly into another.	
	For example photovolatic cell in which light energy is	
	converted into electrical energy.	

	Active transducers work on the principle of	
	a) energy conversion	
	b) mass conversion	
	c) energy alteration	
	d) volume conversion	
66		
		IM
	Answer: a) energy conversion	
	Explanation: Active transducers work on the principle of	
	energy conversion. They convert one form of energy to	
	another. They don't require any power to operate.	
	Accuracy is	
	a) ability of the transducer or sensor to see small differences	
	in reading	
	b) ability of the transducer or sensor to see small differences	
	in reading	
	c) algebraic difference between the indicated value and the	
	true or theoretical value of the measurand	
	d) total operating range of the transducer	
67	a) total operating range of the transactor	
07		1M
	Answer: c) algebraic difference between the indicated value	
	and the true or theoretical value of the measurand	
	Explanation: Accuracy describes the algebraic difference	
	between the indicated value and the true or theoretical value	
	of the measurand. Resolution is the ability of the transducer or	
	sensor to see small differences in reading. Precision refers to	
	the degree of repeatability of a measurant.	
	The smallest change in measurant that will result in a	
	measurable change in the transducer output is called	
	a) offset	
67	b) linearity	
	c) resolution	
	d) threshold	

	Answer: d) threshold	
	Explanation: The threshold of the transducer is the smallest	
	change in measurant that will result in a measurable change in	
	the transducer output. Offset is the output that will exist when	
	it should be zero. Linearity shows closeness of a transducer's	
	calibration curve to a specific straight line with in a given	
	percentage of full scale output.	
	Unwanted signal at the output due either to internal sources	
	or to interference is called	
	a) offset	
	b) noise	
	c) drift	
	d) threshold	
68		1 M
	Answer: b) noise	1 IVI
	Explanation: Noise is the unwanted signal at the output due	
	either to internal sources or to interference. Offset is the	
	output that will exist when it should be zero. The threshold of	
	the transducer is the smallest change in measurant that will	
	result in a measurable change in the transducer output.	
	The ability of the sensor to see small differences in reading is	
	called	
	a) resolution	
	b) drift	
	c) offset	
	d) linearity	
69	Answer: a) resolution	1 M
	Explanation: The ability of the sensor to see small differences	
	in reading is called the resolution of the sensor Offset is the	
	output that will exist when it should be zero. I inearity shows	
	closeness os a transducer's calibration curve to a specific	
	straight line with in a given nercentage of full scale output	
	straight fine with in a given percentage of full scale output.	

	Linearity of transducer is	
70	Linearity of transducer is a) Closeness of the transducer's calibration curve to a special curved line within a given percentage of full scale output b) Closeness of the transducer's calibration curve to a special straight line within a given percentage of full scale output c) Closeness of the transducer's calibration curve to a special straight line within a given percentage of half scale output d) Closeness of the transducer's calibration curve to a special curved within a given percentage of half scale output Answer: b) Closeness of the transducer's calibration curve to a special straight line within a given percentage of full scale output Explanation: Linearity of transducer is closeness of the transducer's calibration curve to a special straight line within a given percentage of full scale output. Basically, it reflects that the output is in some way proportional to the input. A linear sensor produces an output value which is directly proportional to the input.	1M
70	What is the principle behind photoelectric transducers?a) Conversion of wind energy to electrical energyb) conversion of light energy to electrical energyc) conversion of mechanical energy to electrical energyd) conversion of electrical energy to light energyAnswer: b) conversion of light energy to electrical energyExplanation: Photoelectric transducers are based on theprinciple of conversion of light energy into electrical energy.This is done by causing the radiation to fall on aphotosensitive element and measuring the electrical currentso generated with a sensitive galvanometer directly or aftersuitable amplification.	1M

	Which of the following material is used to build photovoltaic	
	cells?	
	a) Selenium	
	b) celenuim	
	c) silicon	
	d) iron	
71	Answer: a) selenium	1 M
	Explanation: Photovoltaic or barrier layer cells usually consist	1 IVI
	of a semiconducting substance, which is generally selenium	
	deposited on a metal base which may be iron and which acts as	
	one of the electrodes. The semiconducting substance is	
	covered with a thin layer of silver or gold deposited by	
	cathodic deposition in a vacuum. This layer acts as a collecting	
	electrode.	
	Photo-diodes work in	
	a) forward biased	
	b) reverse biased	
	c) independent of forward and reverse biasing	
	d) any configuration	
78		1 M
70	Answer: b) reverse biased	1111
	Explanation: The photodiode is a P-N junction semiconductor	
	diode. It always operated in the reversed biased condition.	
	The light is always focused through a glass lens on the junction	
	of the photo diode.	
	Photovoltaic cells need an external electrical supply to	
	function.	
	a) True	
	b) False	
79		1M
	Answer: h) False	
	Explanation: Photovoltaic cells are very robust in	
	construction need no external electrical supply and produce a	
	construction, need no external creet real supply and produce a	

	photocurrent sometimes stronger than other photosensitive	
	elements. Typical photocurrents produced by these cells are	
	as high as 120 mA/lumen. At constant temperature, the	
	current set up in the cell usually shows a linear relationship	
	with the incident light intensity.	
	Thermistor is used to measure	
	a) temperature	
	b) pressure	
	c) height	
	d) displacement	
	uj uispiacement	
	Answer: a) temperature	
80	Explanation: Thermistor is used to measure temperature. It is	1M
	a temperature transducer. With a change in temperature its	
	resistance changes. Thus its working principle is variable	
	resistance. Thermistors are the oxides of certain metals like	
	manganese, cobalt and nickel which have large negative	
	temperature coefficient, i.e. resistance decreases with increase	
	in temperature.	
	Inverse transducers are also known as	
	a) Open loop transducers	
	b) Closed loop transducers	
	c) Input transducers	
	d) Output transducers	
81	Answer: d) Output transducers	1M
	Explanation: Output transducers are which converts electrical	
	quantity to non-electrical quantity, known as inverse	
	transducers.	
	Invarsa transducar is system which converts	
	a) Electrical quantity to non-electrical quantity	
	b) Non-electrical quantity to electrical quantity	
82	c) Flactrical quantity to electrical quantity itself	1M
	d) Non- alactrical quantity to non-alactrical quantity itself	
	uj Non- electrical quantity to non-electrical quantity itself	

	Answer: a) Electrical quantity to non-electrical quantity	
	Explanation: Transducers are devices which transfers	
	measurand which will be a non-electrical quantity to electrical	
	quantity. Inverse transducers are the devices operating just	
	opposite to transducers.	
	Which of the following is an inverse transducer	
	a) Piezoelectric transducer	
	b) LVDT	
	c) Load cell	
	d) Bourdon tube	
02		1 M
05	Answer: a) Diozoalactric transducor	IM
	Further attain Disco all strict transducers and device subject of the	
	Explanation: Plezo electric transducers are devices which are	
	capable of converting electrical quantity to non-electrical	
	quantity, which is an inverse transducer.	
	Input transducers and inverse transducers are the same.	
	a) True	
	b) False	
	Answer: b) False	
84	Explanation: Input transducers are devices which convert non-	1M
	electrical quantity to electrical quantity and Inverse	
	transducers are devices which convert electrical quantity to	
	non-electrical quantity.	
	Which of the following cannot act as inverse transducer?	
	a) Quartz	
	b) Barium titanate	
	c) Lead zirconate	
05	d) Cadmium	4.14
85	Answer: d) Cadmium	IM
	Explanation: Quartz, Barium titanate and Lead zirconate are	
	piezo electrical substances which are known for its ability to	
	act as inverse transducers.	
		1

	Which of the following has the widest range of temperature	
	measurement?	
	a) RTD	
	b) Thermocouple	
	c) Thermistor	
	d) Mercury thermometer	
86	An annar b) Tharmanan la	1M
	Answer: b) Thermocouple	
	Explanation: Thermocouple has the widest range of	
	temperature measurement from -184°C to +2300°C. RTD has a	
	range of -200°C to +850°C. Thermistor has a range of 0°C to	
	100°C where as conventional mercury thermometers range is -	
	37° C to +356°C.	
	The junction at a higher temperature in thermocouple is	
	termed as measuring junction.	
	a) True	
	b) False	
	Answer: a) True	
87	Explanation: The junction at a higher temperature in	1M
	thermocouple is termed as measuring junction. The junction	
	at lower temperature in the thermocouple is called the	
	reference temperature. The cold junction is usually kept at	
	0°C.	
	When two wires of different material are joined together at	
	either end, forming two junctions which are maintained at a	
	different temperature, a force is generated.	
	a) thermo-motive	
88	b) electro-motive	1 M
	c) chemical reactive	
	d) mechanical	
	uj methamtai	

	Answer: a) thermo-motive	
	Explanation: When two wires of different material are joined	
	together at either end, forming two junctions which are	
	maintained at a different temperature, a thermo-motive force	
	is generated causing a current to flow around the circuit. This	
	arrangement is called thermocouple. The junction at higher	
	temperature in thermocouple is termed as measuring	
	junction. The junction at lower temperature in the	
	thermocouple is called the reference temperature.	
	The junction at a lower temperature in the thermocouple	
	called measuring junction.	
	a) True	
	b) False	
80	Answer: b) False	1 M
09	Explanation: The junction at a lower temperature in the	1 141
	thermocouple is called the reference temperature. The cold	
	junction is usually kept at 0° C. The junction at a higher	
	temperature in thermocouple is termed as measuring	
	junction.	
	The lower temperature junction in thermocouple is	
	maintained at	
	a) -273 K	
	b) 0 K	
	c) -327 K	
	d) 273 K	
90	Answer: d) 273 K	1M
	Explanation: The lower temperature junction in thermocouple	
	is maintained at 273 K (0ºC). The junction at lower	
	temperature in the thermocouple is called the reference	
	temperature. The junction at higher temperature in	
	thermocouple is termed as measuring junction.	

	RTD stands for	
91	a) resistance temperature device	
	b) resistance temperature detector	
	c) reluctance thermal device	1M
	d) resistive thermal detector	
	Answer: b) resistance temperature detector	
	Explanation: RTD stands for Resistance Temperature Device. It	
	is a passive sensor and requires current excitation to produce	
	an output voltage. RTD has very low temperature coefficient.	
	Voltage drop across RTD is much larger than thermocouple	
	output voltage.	
	Thermister is used to measure	
	a) temperature	
	b) pressure	
	c) height	
	d) displacement	
	Answer: a) temperature	
92	Explanation: Thermistor is used to measure temperature. It is	1M
	a temperature transducer. With a change in temperature its	
	resistance changes. Thus its working principle is variable	
	resistance. Thermistors are the oxides of certain metals like	
	manganese, cobalt and nickel which have large negative	
	temperature coefficient, i.e. resistance decreases with increase	
	in temperature.	
	What is the principle of operation of LVDT?	
	a) Mutual inductance	
	b) Self-inductance	
	c) Permanence	
02	d) Reluctance	1 M
93	Answer: a) Mutual inductance	1 1 1 1
	Explanation: Linear variable differential transformer (LVDT)	
	is a type of transformer used for measuring displacement, and	
	it has the same principle of operation of transformer.	

	Which of the following can be measured using Piezo-electric	
	transducer?	
	a) Velocity	
	b) Displacement	
	c) Force	
Q <i>1</i> .	d) Sound	1 M
74		I IVI
	Answer: c) Force	
	Explanation: Piezo-electric crystals produces an electric signal	
	when pressure applied. Examples are quartz, Rochelle salt.	
	That is, it converts force into electric signals.	
	Capacitive transducer is used for?	
	a) Static measurement	
	b) Dynamic measurement	
	c) Transient measurement	
	d) Both static and dynamic	
95		1M
	Answer: b) Dynamic measurement	
	Explanation: Capacitive transducers convert measurant into	
	changes in capacitance. Change in capacitance is caused by	
	change in dielectric or change in distance between plates.	
	Which of the following is used in photo conductive cell?	
	a) Selenium	
	b) Quartz	
	c) Rochelle salt	
	d) Lithium sulphate	
96	Answer: a) Selenium	1M
	Explanation: Photo conductive action is the property of	
	reduction of resistance when exposed to light. Selenium shows	
	photoconductive action.	

	What are transducers?	
	a) They convert power from one form to another	
	b) They convert work from one form to another	
	c) They convert work to power	
	d) They convert energy from one form to another	
97		1M
	Answer: d) They convert energy from one form to another	
	Explanation: Transducer are devices that convert energy from	
	one form to another. This energy can be either mechanical	
	energy, light energy, heat energy or any other forms of energy.	
	Active transducer do not require any type of additional power	
	source for an operation.	
	a) True	
	b) False	
98	Answer: a) True	1M
	Explanation: Active transducers do not require any additional	
	power source for converting the energy from one form to	
	another as they work on the principle of energy conversion.	
	One such example of active transducer is thermocouple.	
	What type of energy conversion does a piezoelectric	
	transducer perform?	
	a) It converts mechanical energy to sound energy	
	b) It converts sound energy to mechanical energy	
	c) It converts mechanical energy to electrical energy	
	d) It converts electrical energy to mechanical energy	
99	Answer: c) It converts mechanical energy to electrical energy	1M
	Explanation: A piezoelectric transducer converts mechanical	
	energy to electrical energy. They are generally used to detect a	
	knock or any impulsive force. They are also used in electronic	
	drum pads to detect the impulse provided by the drumsticks.	

100	The IC LM35 is used as which type of sensor? a) Pressure sensor b) Temperature sensor c) Light sensor d) Mechanical sensor Answer: b) Temperature sensor Explanation: The LM35 IC manufactured by Texas Instruments is used as a temperature sensor. The output voltage generated by this IC is linearly proportional to the temperature in Centigrade. The output voltage is directly proportional to the temperature.	1M
101	 What is the full form of LVDT with respect to displacement transducer? a) Linear variable differential temperature b) Linear variable differential transformer c) Liquid visible differential transformer d) Liquified visible differential transformer Answer: b)Linear variable differential transformer Explanation: LVDT stands for Linear variable differential transformer. It is a displacement transducer that converts rectilinear motion to electric signals. They are used widely due to their robustness. 	1M

	What is the effect on properties of LDR when light falls on it?	
	a) Its resistance remains same	
	b) Its resistance changes	
	c) Its capacitance changes	
	d) Its inductance changes	1M
102	Answer: b) Its resistance changes	
	Explanation: When light falls on LDR (Light dependent	
	resistor) its resistance changes. It is inversely proportional to	
	the intensity of light. When light falls on LDR, the resistance	
	decreases and more current starts to flow through it. It is used	
	to measure the intensity of light.	
	What is measured by a hall effect transducer?	
	a) Electric flux	
	b) Electric Field	
	c) Magnetic field	
	d) Temperature	
103	Answer: c) Magnetic field	1M
	Explanation: Hall effect transducers or Hall effect sensor is	
	used for measuring the magnitude of the magnetic field. The	
	output voltage produced by the sensor is directly proportional	
	to the strength of the magnetic field passing through it.	

Thank You

https://shikshamentor.com/basic-electrical-electronics-enggfor-msbte-k-scheme/

Visit

https://shikshamentor.com/

