

https://shikshamentor.com/basic-electricalelectronics-engg-for-msbte-k-scheme/

312302 - Basic Electrical & Electronics Engg (BEE-Sem II) As per MSBTE's K Scheme CO / CM / IF / AI / AN / CW / DS

Unit V	Transistors Marks	s Marks - 12	
S. N.	MSBTE Board Asked Questions	Marks	
1.	BJT stands for a) Bi-Junction Transfer b) Blue Junction Transistor c) Bipolar Junction Transistor d) Base Junction Transistor Answer: c) Bipolar Junction Transistor Explanation: BJT stands for Bipolar Junction Transistor. It was the first transistor to be invented. It is widely used in circuits.	1M	
2.	The doped region in a transistor are a) Emitter and Collector b) Emitter and Base c) Collector and Base d) Emitter, Collector and Base Answer: d) Emitter, Collector and Base Explanation: There are three doped regions forming two p-n junctions between them. There are two types of transistors n-p- n transistor and p-n-p transistor.	1M	

	Which region of the transistor is highly doped?	
	a) Emitter	
	b) Base	
	c) Collector	
	d) Both Emitter and Collector	
3.		
51		1M
	Answer: a) Emitter	
	Explanation: In a transistor, emitter is of moderate size and	
	heavily doped. Collector is moderately doped and larger as	
	compared to the emitter. Base is very thin and lightly doped.	
	Both the junctions in a transistor are forward biased.	
	a) True	
	b) False	
4.	Answer: b)False	1M
	Explanation: Emitter-base junction of the transistor is forwards	
	biased while the collector-base junction of the transistor is	
	reverse biased or vice versa depending on the condition desired	
	Which junction is forward biased when transistor is used as an	
	amplifier?	
	a) Emitter-Base	
	b) Emitter-Collector	
	c) Collector-Base	
	d) No junction is forward biased	
5.		
5.	Answer: a) Emitter-Base	1M
	Explanation: For Transistor to be used as an amplifier, the	
	emitter-base junction is forward biased and the base-collector	
	region is reverse biased. This state is called an active state.	
	region is reverse plased. This state is called all active state.	

	 If I_e is the current entering the emitter, I_b is the current leaving the base and I_c is the current leaving the collector in a p-n-p transistor used for amplification, what is the relation between I_e, I_b and I_c? a) I_e <i<sub>c</i<sub> b) I_c <i<sub>b</i<sub> c) I_b <i<sub>c</i<sub> 	
6.	d) $I_e < I_b + I_c$	1M
	Answer: c) I _b <i<sub>c</i<sub>	
	Explanation: The total current entering the emitter, I _e , goes to	
	the base form where most of the current enters the collector	
	and a very small fraction of the current leaves the base. Thus,	
	$I_{\rm b} < I_{\rm c}$.	
	In the active state, the emitter-base junction has a higher	
	resistance than the collector-base junction.	
	a) True	
	b) False	
	b) ruibe	
7.	Answer: b) False	1M
	Explanation: Since the emitter-base junction is forward biased,	
	their resistance is lower than the collector-base junction, which	
	is reverse biased.	
	From the figure, what is β_{ac} when V_{CE} is 10V and I_c is 4 mA?	
8.	40 µA 40 µA 30 µA 20 µA Collector to Emitter Voltage	1M
	Collector to Emitter Voltage	

	a) 50	
	b) 100	
	c) 150	
	d) 200	
	Answer: c) 150	
	Explanation: We know, $\beta_{ac} = \Delta I_c / \Delta I_b$	
	Now, at V_{CE} = 10V, we read two values of I_c from the graph.	
	Then, $\Delta I_b = 10 \ \mu A$, $\Delta I_c = 1.5 \ m A$	
	Therefore, $\beta_{ac} = 1.5 \text{ mA}/10 \mu \text{A}$	
	= 150.	
	A low input to the transistor gives	
	a) Low output	
	b) High Output	
	c) Normal Output	
0	d) No Output	
9.	Answer: b) High Output	1M
	Explanation: A low input to the transistor gives a high output	
	and a high input gives a low output. The switching circuits are	
	designed such a way that the transistor does not stay in the	
	active state.	
	From the output characteristics of a transistor, one cannot	
	calculate	
	a) I _B	
	b) V _{BE}	
10.	c) I _c	
	d) V _{CE}	
	Answer: b) V _{BE}	1M
	Explanation: The output characteristics graph for a transistor	
	gives us the relation between the collector current and the	
	emitter voltage. It also gives us the value of base current. But it	
	gives no information about the base-emitter voltage.	

	What is the expression for the Current Amplification factor?	
	a) ΔΙ c ΔVc	
	b) ΔVcΔIc	
	c) (ΔΙCΔΙΒ)VCE	
	d) (ΔΙCΔΙΒ)VBE	
11.	Answer: c) (ΔΙCΔΙΒ) VCE	1M
	Explanation: Amplification factor can be defined as the ratio of	
	the change in collector current to the change in base current at a	
	constant collector-emitter voltage when the transistor is in	
	active state. The correct expression for the amplification factor	
	is: (ΔΙCΔΙΒ) VCE.	
	A transistor has	
	• a) one pn junction	
	• b) two pn junctions	
	• c) three pn junctions	
12.	• d) four pn junctions	1M
		1 1/1
	Answer: b) two pn junctions	
	Explanation: A transistor consists of 2 pn junctions in the series	
	of p-n-p or n-p-n.	
	The number of depletion layers in a transistor is	
	• a) four	
	• b) three	
	• c) one	
13.	• d) two	1M
	Answer: d) two	
	Explanation:Number of depletion layers in a transistor is two. A	
	transistor made up of two PN diodes connected back to back.	

The element that has the biggest size in a transistor is• a) collector• b) base• c) emitter14.• d) collector-base junctionAnswer: a) collectorExplanation:The collector is the biggest component in the transistor.In a pnp transistor, the current carriers are• a) acceptor ions• b) donor ions• c) free electrons• d) holesAnswer: d) holesExplanation: In PNP transistors, in this type of transistor, majority charge carriers are holes, and minority
 a) acceptor ions b) donor ions c) free electrons d) holes Answer: d) holes Explanation: In PNP transistors, in this type of
 b) donor ions c) free electrons d) holes Answer: d) holes Explanation: In PNP transistors, in this type of
 c) free electrons d) holes Answer: d) holes Explanation: In PNP transistors, in this type of
 • d) holes 15. • d) holes 1M Answer: d) holes Explanation: In PNP transistors, in this type of
15. 1M Answer: d) holes 1M Explanation: In PNP transistors, in this type of 1M
Answer: d) holes Explanation: In PNP transistors, in this type of
transistor, majority charge carriers are holes, and minority
charge carriers are electrons.
A transistor is a operated device.
a) current
b) voltage
c) both voltage and current
16.d) none of the above1M
Answer: a) current
• Explanation: It is a current-driven device since the collector
current is controlled via the base current.

	In an npn transistor,are the minority carriers	
	a) free electrons	
	b) holes	
	c) donor ions	
17.	d) acceptor ions	1M
	Answer: b) holes	
	Explanation:In an NPN transistor, holes are the minority	
	carriers and free electrons are the majority carriers.	
	In a transistor, the base current is aboutof emitter current.	
	a) 25%	
	b) 20%	
	c) 35%	
18.	d) 5%	1M
	Answer: d) 5%	
	Explanation:The Base current is typically 1% to 5% of the	
	emitter or collector current for small-signal transistors.	
	The input impedance of a transistor is	
19.	• a) high	
	• b) low	
	• c) very high	
	• d) almost zero	1M
	Answer:c) very high	
	• Explanation:Since the transistors have a constant current	
	source in the emitter circuit, the input impedance is very high.	
	In a transistor,	
20.	• $IC = IE + IB$	
20.	• $IB = IC + IE$	1M
	• $IE = IC - IB$	

	•	IE = IC + IB	
		Answer: IE = IC + IB	
		Explanation:It can also be seen from the common emitter circuit	
		above that the emitter current le is the sum of the collector	
		current, Ic and the base current, Ib, added together so we can	
		also say that "Ie = Ic + Ib" for the common emitter	
		configuration.	
		The value of α of a transistor is	
	•	a) more than 1	
	•	b) less than 1	
	•	c) 1	
	•	d) none of the above	
21.		Answer: less than 1	1M
		Explanation:collector current is almost same as emitter current.	
		Hence ratio of collector to emitter current is less than unity	
		always. So alpha is less than unity. It's value lies between 0.9 to	
		0.995.	
		The most commonly used transistor arrangement is	
		arrangement.	
	•	a) common emitter	
	•	b) common base	
	•	c) common collector	
22.	•	d) none of the above	
<i>44</i> .			1M
		Answer: a) common emitter	
		Explanation:The most commonly used transistor arrangement	
		is common emitter arrangement.	

	In a BJT	
	a) The base region is sandwiched between emitter and collector	
	b) The collector is sandwiched between base and emitter	
	c) The emitter region is sandwiched between base and collector	
23.	D.None of the above	
23.	Answer: a) The base region is sandwiched between emitter and	1M
	collector	
	Explanation: In a BJT The base region is sandwiched between	
	emitter and collector	
	Amplifiers and oscillators using BJT, operate in region	
	a) Inverted mode	
	b) Active	
	c) Cut off	
24.	d) Saturation	1M
	Answer: b)Active	1
	Explanation: BJT operate in active region to work as Amplifier	
	and Oscillators.	
	Base is always a and doped layer.	
	a) Thin, lightly	
	b) Thick , lightly	
	c) Thin , heavily	
25.	Answer: a) Thin, lightly	1M
	Explanation: In a transistor, the base is very lightly doped as	
	compared to the emitter because by doing so. Base current is	
	high. Recombination is decreased in the base region.	
	For a BJT, for common base configuration the input	
	characteristics are represented by a plot between which of the	
26.	following parameters?	1M
	a) V _{BE} and I _E	
	b) V _{BE} and I _B	

	c) V _{CE} and I _C	
	d) V _{CC} and I _C	
	Answer: a) V _{BE} and I _E	
	Explanation: The input signal is applied between the base and	
	the emitter terminals. Input current flowing is the base current	
	and hence characteristics are represented by a plot between V _{BE} and I _B .	
	In a BJT, if the collector-base junction is reverse-biased and the	
	base-emitter junction is forward-biased, which region is the BJT	
	operating in?	
	a) Saturation region	
	b) Active region	
	c) Cutoff region	
27.	d) Reverse active region	1M
		1111
	Answer: b) Active region	
	Explanation: If the collector-base junction is reverse-biased and	
	the base-emitter junction is forward-biased, then the BJT	
	functions in the active region of the output characteristics.	
	In a BJT, if the collector-base junction is forward-biased and the	
	base-emitter junction is forward-biased, which region is the BJT	
	operating in?	
	a) Saturation region	
	b) Active region	
	c) Cutoff region	
28.	d) Reverse active region	1M
	Answer: a) Saturation region	
	Explanation: If the collector-base junction and the base-emitter	
	junction are both forward-biased, then the BJT functions in the	
	saturation region of the output characteristics.	

	In a BJT, if the collector-base junction and the base-emitter	
	junction are both reverse-biased, which region is the BJT	
	operating in?	
	a) Saturation region	
	b) Active region	
	c) Cutoff region	
29.	d) Reverse active region	1M
	Answer: c) Cutoff region	
	Explanation: If the collector-base junction and the base-emitter	
	junction are both reverse-biased, then the BJT functions in the	
	cutoff region of the output characteristics.	
	In P-N-P transistor, base will be of	
	III I -N-I CLAUSISCOL, DASC WIII DC OL	
	a) P material	
	b) N material	
	c) Either of the above	
30.	d) None of the above	1 M
	Answer:b) N material	1M
	Explanation:The transistor in which one n-type material is	
	doped with two p-type materials such type of transistor is	
	known as PNP transistor.Base will be of N type material	
	A P-N-P transistor has	
	a) Only acceptor ions	
	b) Only donor ions	
31.	c) Two P-regions and one N-region	
	d) Three P-N junction	
	Answer:c)Two P-regions and one N-region	1M
	Explanation:The transistor in which one n-type material is	
	doped with two p-type materials such type of transistor is	
	known as PNP transistor.	

	Which type of amplifiers exhibits the current gain approximately equal to unity without any current amplification? a) CE b) CB c) CC d) Cascade	
32.	 Answer: b) CB Explanation: In common base amplifier, input signal is applied at emitter terminal while the amplified output signal is obtained at the collector terminal with respect to ground. For the AC signals, the base terminal is specifically connected to ground through the capacitor. Even, the output resistance is very high & hence, the current gain is approximately equal to unity. Due to this, there is no possibility of current amplification. Consequently, the CB amplifier exhibits high voltage gain. 	1M
33.	The configuration in which voltage gain of transistor amplifier is lowest isa) common collector b) common emitter c) common base d) common emitter & base Answer: a) common collector Explanation: In common collector configuration (also known as the emitter follower) because the emitter voltage follows that of the base. Offering a high input impedance and a low output impedance it is extensively used as a buffer. The voltage gain is unity, even though current gain is high. The input and output signals are in phase.	1M

	The configuration in which current gain of transistor amplifier	
	is lowest is	
	a) common collector	
	b) common base	
	c) common emitter	
	d) common emitter & base	
34.	Answer: b) common base	1M
	Explanation: In Common base configuration, the input	
	impedance is very low; While offering a high output impedance.	
	Although the voltage is high, the current gain is low and the	
	overall power gain is also low when compared to the other	
	transistor configurations available. Thus, there is no current	
	amplification because of unity current gain.	
	The configuration in which input impedance of transistor	
	amplifier is lowest is	
	a) common collector	
	b) common emitter	
	c) common base	
	d) common emitter & base	
35.		
55.	Answer: c) common base	1M
	Explanation: In Common base configuration, the input	
	impedance is very low; While offering a high output impedance.	
	Although the voltage is high, the current gain is low and the	
	overall power gain is also low when compared to the other	
	transistor configurations available.	
	transistor computations available.	
	The configuration in which output impedance of transistor	
	amplifier is highest is	
36.	a) common collector	1 \/
	b) common base	1M
	c) common emitter	
L	1	

	d) common collector and base	
	Answer: b) common base Explanation: In Common base configuration, the input impedance is very low; While offering a high output impedance. Although the voltage is high, the current gain is low and the overall power gain is also low when compared to the other transistor configurations available.	
37.	In which region a transistor acts as an open switch?a) cut off regionb) inverted regionc) active regiond) saturated regionAnswer: a) cut off regionExplanation: In this mode, both the junctions are reverse biased.The transistor has practically zero current because the emitterdoes not emit charge carriers to the base. There is negligibilitycurrent due to minority carriers. In this mode the transistor actsas an open switch.	1M
38.	In which region a transistor acts as a closed switch? a) cut off region b) inverted region c) active region d) saturated region Answer: d) saturated region Explanation: In this mode, both the junctions are forward biased. The negative terminal of the battery is connected to the emitter. The collector current becomes independent of base current. In this mode the transistor acts as a closed switch.	1M

-		
	The current which is helpful for LED to turn on is	
	a) emitter current	
	b) base current	
	c) collector current	
	d) depends on bias	
39.	Answer: c) collector current	1M
	Explanation: Depending on the type of load, a collector current	
	is induced that would turn on the motor or LED. The transistor	
	in the circuit is switched between cut off and saturation. The	
	load, for example, can be a motor or a light emitting diode or	
	any other electrical device.	
	Which of the following statements is true?	
	a) Solid state switches are applications for an AC output	
	b) LED's can be driven by transistor logics	
	c) Only NPN transistor can be used as a switch	
	d) Transistor operates as a switch only in active region	
40.	Answer: b) LED's can be driven by transistor logics	
40.	Explanation: Output devices like LED's only require a few	1M
	milliamps at logic level DC voltages and can therefore be driven	
	directly by the output of a logic gate. However, high power	
	devices such as motors or lamps require more power than that	
	supplied by an ordinary logic gate so transistor switches are	
	used.	
	The base emitter voltage in a cut off region is	
	a) greater than 0.7V	
	b) equal to 0.7V	
41.	c) less than 0.7V	
	d) cannot be predicted	1M
	Answer: c) less than 0.7V	

	Explanation: From the cut off characteristics, the base emitter voltage (V _{BE}) in a cut off region is less than 0.7V. The cut off region can be considered as 'off mode'. Here, V _{BE} > 0.7 and I _C =0. For a PNP transistor, the emitter potential must be negative with respect to the base In saturation region, the depletion layer	
	 a) increases linearly with carrier concentration b) decreases linearly with carrier concentration c) increases by increasing the emitter current d) decreases by decreasing the emitter voltage drop 	
42.	Answer: d) decreases by decreasing the emitter voltage drop Explanation: Here, the transistor will be biased so that maximum amount of base current is applied, resulting in maximum collector current resulting in minimum emitter voltage drop which results in depletion layer as small as possible and maximum current flows through the transistor.	1M
	The base emitter voltage in a saturation region is a) greater than 0.7V b) equal to 0.7V c) less than 0.7V d) cannot be predicted	
43.	Answer: d) cannot be predicted Explanation: From the saturation mode characteristics, the transistor acts as a single pole single throw solid state switch. A zero collector current flows. With a positive signal applied to the base of transistor it turns on like a closed switch.	1M

	The switching of power with a PNP transistor is called	
	a) sourcing current	
	b) sinking current	
	c) forward sourcing	
	d) reverse sinking	
44.	Answer: a) sourcing current	1M
	Explanation: Sometimes DC current gain of a bipolar transistor	
	is too low to directly switch the load current or voltage, so	
	multiple switching transistors is used. The load is connected to	
	ground and the transistor switches the power to it.	
	ground and the transistor switches the power to it.	
	The switching of power with a NPN transistor is called	
	a) sourcing current	
	b) sinking current	
	c) forward sourcing	
	d) reverse sinking	
45.		
43.	Answer: b) sinking current	1M
	Explanation: Sometimes DC current gain of a bipolar transistor	
	is too low to directly switch the load current or voltage, so	
	multiple switching transistors is used. The load is connected to	
	supply and the transistor switches the power to it.	
	Which of the following is not a part of a BJT?	
	a) Base	
	b) Collector	
	c) Emitter	
46.	d) None of the mentioned	
		1M
	Answer: d) None of the mentioned	
	Explanation: BJT consists of three semiconductor regions, base	
	region, emitter region and collector region.	

47.	In which of the following modes can a BJT be used? a) Cut-off mode b) Active mode c) Saturation mode d) All of the mentioned Answer: d) All of the mentioned Explanation: These three are the defined regions in which a BJT operates.	1M
48.	If a BJT is to be used as a switch, it must operate in a) Cut-off mode or active mode b) Active Mode or saturation mode c) Cut-off mode or saturation mode d) Cut-off mode or saturation mode or active mode Answer: c) Cut-off mode or saturation mode Explanation: A BJT operates as an amplifiers in active mode and as a switch in cut-off or saturation mode.	1M
49.	In cut off mode a) The base-emitter junction is forward biased and emitter- collector junction is reversed biased b) The base-emitter junction is forward biased and emitter- collector junction is forward biased c) The base-emitter junction is reversed biased and emitter- collector junction is reversed biased d) The base-emitter junction is reversed biased and emitter- collector junction is forward biased Answer: c) The base-emitter junction is reversed biased emitter-collector junction is reversed biased Explanation: In cut-off mode there is no current flowing through the BJT hence both junctions must be reversed biased else if either of them is forward biased then the current will flow.	1M

50.	On which of the following does the collector current not depends upon? a) Saturation current b) Thermal voltage c) Voltage difference between the base and emitter d) None of the mentioned Answer: d) None of the mentioned Explanation: Collector current depends linearly of the saturation current and exponentially to the ratio of the voltage difference between the base and collector and thermal voltage.	1М
5.1	Where is the input measured in a common base transistorphysical model?a) Collector terminalb) Emitter terminalc) Base terminald) GroundAnswer: b) Emitter terminalExplanation: In the physical model of a common base transistoramplifier the input is measured at the emitter terminal of theBJT biased device. Whereas, the output is measured across thecollector terminal of the biased BJT device.	1M
52.	Which parameter of the physical model is varied while measuring the input characteristics of a common-base transistor? a) Emitter current b) Emitter voltage c) Collector current d) Emitter base voltage Answer: d) Emitter base voltage	1M

	Explanation: To determine the input characteristics, the	
	collector-base voltage is kept constant at zero volts and the	
	emitter base voltage is increased from zero volts to different	
	voltage levels. For each voltage level of the input voltage, the	
	input current is recorded.	
	Where is the output measured in a common base transistor	
	physical model?	
	a) Collector terminal	
	b) Emitter terminal	
	c) Base terminal	
	d) Ground	
		1M
	Answer: a) Collector terminal	
	Explanation: In the physical model of a common base transistor	
	amplifier the output is measured at the collector terminal of the	
	BJT biased device. Whereas, the input is measured across the	
	emitter terminal of the biased BJT device.	
	Which parameter of the physical model is varied while	
	measuring the output characteristics of a common-base	
	transistor?	
	a) Emitter current	
	b) Emitter voltage	
	c) Collector current	
	d) Collector base voltage	
53.	Answer: d) Collector base voltage	1M
	Explanation: To determine the output characteristics, the	
	emitter current is kept constant at zero and the collector base	
	voltage is increased from zero volts to varying voltage levels.	
	For each voltage level of the output voltage, the collector	
	current is recorded.	

54.	How do you calculate the dynamic input resistance of a CB transistor? a) $\Delta V_{BE} / \Delta I_C$ b) $\Delta V_{BE} / \Delta I_E$ c) $\Delta V_{CB} / \Delta I_C$ d) $\Delta V_{CB} / \Delta I_E$ Answer: b) $\Delta V_{BE} / \Delta I_E$ Explanation: Dynamic input resistance is defined as the ratio of change in emitter base voltage to the corresponding change in the emitter current. While the collector voltage is kept at a constant value. Therefore, $r_i = \Delta V_{BE} / \Delta I_E$.	1М
55.	A bipolar junction transistor has beta=250 and base current=10micro ampere. What is the collector current? a) 25 micro ampere b) 10 micro ampere c) 2.5 milli ampere d) 10 milli ampere Answer: c) 2.5 milli ampere Explanation: Given: Base current(lb)=10micro ampere Beta=250 Since Ic(collector current)=beta*Ib(base current) Ic(collector current)=250*10 micro ampere=2.5 milli ampere.	1M
56.	What happens to the collector current if the emitter current increases while no base voltage is applied? a) Increases b) Decreases c) No current d) First increases then decreases	1M

	Answer: c) No current	
	Explanation: When no voltage is provided at the base then no	
	current passes from emitter to collector, so even if very high	
	potential difference is applied at the emitter collector junction,	
	no current flows through it. This configuration is used for	
	switching in various appliances using bipolar junction	
	transistor.	
	Which is an example of bipolar junction transistor?	
	a) BC547B	
	b) CMCP793V-500	
	c) SLB700A/06VA	
	d) MBR5H100MFST1G	
57.	Answer: a) BC547B	1M
	Explanation: BC547B is an example of bipolar junction	
	transistor. It is most common and widely used NPN transistor. It	
	is small, cheap, uses less power and fulfills most of the	
	requirement for general purpose use.	
	In bipolar junction transistors both electron and holes are	
	responsible for conduction.	
	a) True	
	b) False	
58.	Answer: a) True	1M
	Explanation: In bipolar junction transistors both electron and	
	holes are responsible for conduction. The term "bipolar" itself	
	mean two polarities which represents that both charged particle	
	are responsible for the conduction in the bipolar junction	
	transistor.	

	Three PN junctions is present in a bipolar junction transistor. a) True b) False	
59.	Answer: b) False	1M
	Explanation: A bipolar junction transistor has 2 PN junctions. First PN junction is between the base emitter terminal and second PN junction is between base collector terminals. A base is always between emitter and collector.	
60.	 What is the minimum voltage required to make base emitter junction of a real silicon bipolar junction transistor in forward biased? a) 0.7 volts b) 1.8 volts c) 2.3 volts d) 0.3 volts Answer: a) 0.7 volts is the minimum voltage required to make the base emitter junction of a real silicon bipolar junction transistor in forward biased. This 0.7 volt potential difference between base and emitter terminal makes the PN junction in forward biased.	1M
61.	 What are the parameters over which transfer characteristics curve of bipolar junction transistor is made in common emitter configuration? a) Emitter Current and time b) Emitter Voltage and time c) Collector Current and frequency d) Collector to Emitter Voltage and Collector current 	1M

	Answer: d) Collector to Emitter Voltage and Collector current	
	Explanation: Collector to Emitter Voltage and Collector current are the parameters considering which transfer characteristics	
	curve of bipolar junction transistor is made. It is voltage versus	
	current graph in which Current is denoted on Y-axis and voltage	
	is denoted on (X-axis).	
	A bipolar junction transistor has beta=100 and base current= 8	
	micro ampere. What is the collector current?	
	a) 25 micro ampere	
	b) 0.8 micro ampere	
	c) 0.8 milli ampere	
	d) 10 milli ampere	
62.	Answer: c) 0.8 milli ampere	1M
	Explanation: Given;	
	Base current (Ib) = 8 micro ampere	
	Beta=100	
	Since Ic(collector current)=beta*Ib(base current)	
	Ic(collector current)=100*8 micro ampere=0.8 milli ampere.	
	FET is a voltage controlled device.	
	a) True	
	b) False	
	Answer: a) True	
63	Explanation: Field Effect Transistors are voltage controlled	1M
	devices, by applying some voltage between the gate and source,	
	the drain current can be controlled. In order to control the	
	operation of FET the gate to drain voltage is varied to operate	
	the FET in different regions of operation.	

	Which of the following statement is true about FET?	
	a) It has high output impedance	
	b) It has high input impedance	
	c) It has low input impedance	
	d) It does not offer any resistance	
64	Answer: b) It has high input impedance	1M
	Explanation: Because of the Sio2 insulator, doped between drain	
	and source at the top, the resistance offered by this is very high.	
	The insulator will stop the flow of electron from one part to	
	another which acts as an open circuit.	
	Comparing the size of BJT and FET, choose the correct	
	statement?	
	a) BJT is larger than the FET	
	b) BJT is smaller than the FET	
	c) Both are of same size	
	d) Depends on application	
65	Answer: a) BJT is larger than the FET	1M
	Explanation: BJT usually are built with a thickness of up to 1cm	
	whereas the FET uses a fabrication technique which makes its	
	size in mm.	
	What is the main advantage of FET which makes it more useful	
	in industrial applications?	
	a) Voltage controlled operation	
	b) Less cost	
	c) Small size	
66	d) Semiconductor device	1M
	Answer: c) Small size	
	Explanation: Because of its small size, the IC chips can be made	

	even smaller which reduces the wear and tear. The process	
	technology used with process technology constant at which is	
	the ratio of Width and Length, the FET is made more	
	advantageous.	
	For a FET when will maximum current flows?	
	a) $V_{gs} = 0V$	
	b) $V_{gs} = 0v$ and $V_{ds} > = V_p $	
	c) $V_{DS} \ge V_p $	
67	d) $V_{\rm p} = 0$	1M
	Answer: b	
	Explanation: For a FET the current reaches maximum that is	
	IDSS occurs when $V_{gs} = 0V$ and $V_{DS} \ge V_p $	
	What is the value of current when the gate to source voltage is	
	less than the pinch off voltage?	
	a) 1A	
	b) 5A	
	c) 100A	
67	d) 0	
		1M
	Answer: d) 0	
	Explanation: When the gate to source voltage is less than pinch	
	off, both of the junctions will be reverse biased and hence no	
	current flows.	
	What is the value of drain current when V _{gs} =pinch off voltage?	
	a) 0A	
	b) 1A	
	c) 2A	
	d) Cannot be determined	
68		1M
	Answer: a) 0A	
	Explanation: $I_D = I_{DSS} (1 - V_{gs} / V_p)^2$	
	If $V_{gs} = V_{p}$, then	
	$I_D = I_{DSS} (1-1) = 0.$	

	To use FET as a voltage controlled resistor, in which region it	
	should operate?	
	a) Ohmic region	
	b) cut off	
	c) Saturation	
69	d) cut off and saturation	1M
	Answer: a) Ohmic region	
	Explanation: By varying the gate to source voltage, Resistance	
	can be varied as follows $r_d = r_0/(1-V_{gs}/V_p)^2$	
	For an n-channel FET, What is the direction of current flow?	
	a) Source to drain	
	b) Drain to source	
	c) Gate to source	
70	d) Gate to drain	1M
	Answer: b) Drain to source	
	Explanation: When a voltage greater than pinch off is applied,	
	the current starts flowing from Drain to source.	
	For a p-channel FET, What is the direction of current flow?	
	a) Source to drain	
	b) Drain to source	
	c) Gate to source	
	d) Gate to drain	
	Answer: a) Source to drain	
70	Explanation: When the voltage is lesser than pinch off, the	1 1 1
	current flows from Source to Drain.	1M
	The forward bias drain and gate is the reason for the flow of	
	electron from Drain to source, as the conventional current flows	
	opposite to the electron flow, the current will flow from Source	
	to Drain.	

		1
71	 Field effect transistors are known as a) unipolar device b) bipolar device c) tripolar device d) multipolar device Answer: a) unipolar device Explanation: Field effect transistors are unipolar transistors as they involve single-carrier-type operation. 	1M
78	 Field effect transistor's conductivity is regulated by a) input current b) output current c) terminal voltage d) supply voltage Answer: c) terminal voltage Explanation: Field effect transistor's conductivity is regulated by the voltage applied to a terminal (the gate) which is insulated from the device. 	1M
79	In FET, the current enters the channel through a) source b) drain c) gate d) nodes Answer: a) source Explanation: In field effect transistor, the current enters the channel through source and the current leaves the junction through drain. 	1M

	Which terminal bias the transistor to operation?	
	a) source	
	b) drain	
	c) gate	
	d) base	
80		1M
	Answer: d) Base	
	Explanation: Other than the three terminals, source drain and	
	gate, there is a fourth terminal called as body or base. This is	
	used to bias the transistor to operation.	
	In FET, the width is greater than the length of the gate.	
	a) true	
	b) false	
	Answer: a) true	
81	Explanation: In FET, the width is greater than the length of the	1M
	gate. Length gives the distance between source and drain. Width	
	is the extension of the transistor, in the direction perpendicular	
	to cross section.	
	Which terminal controls the electron flow passage?	
	a) source	
	b) drain	
	c) gate	
	d) base	
82		1M
	Answer: c) gate	
	Explanation: Gate permits the electron to flow through or block	
	their passage by creating or eliminating the channel between	
	source and drain.	
	The expansion of depletion region in n-channel device makes	
	the channel	
02	a) narrow	1 1 7
83	b) wide	1M
	c) does not affect the channel	
	1	l

	d) cannot be determined	
	Answer: a) narrow	
	Explanation: In n-channel depletion mode device, as the	
	depletion region width expands, it encroaches the channel from	
	the sides and the channel becomes narrow.	
	Which voltage increases the channel size?	
	a) negative Vgs	
	b) positive Vgs	
	c) negative Vds	
04	d) positive Vds	1 M
84		1M
	Answer: b) positive Vgs	
	Explanation: A positive gate to source voltage increases the	
	channel size and allows the electrons to flow easily.	
	Which mode of operation of FET is used, when amplification is	
	needed?	
	a) active	
	b) saturation	
	c) non saturation	
85	d) linear	1M
	Answer: b) saturation	
	Explanation: Saturation mode, which is in between the ohmic	
	and saturation region is used when amplification is needed.	
	Which of the following relation is true about gate current?	
	a) $I_G = I_D + I_S$	
	b) $I_D = I_G$	
	c) $I_S = I_G$	
0.0	d) I _G =0	114
86	Answer: d) I _G =0	1M
	Explanation: The FET physical structure which contains silicon	
	dioxide provides infinite resistance. Hence no current will flow	
	through the gate terminal.	

	For a fixed bias circuit the drain current was 1mA, what is the	
	value of source current?	
	a) 0mA	
	b) 1mA	
	c) 2mA	
87	d) 3mA	1M
	Answer: c) 2mA	
	Explanation: We know that for an FET same current flows	
	through the gate and source terminal, Hence source	
	current=1mA.	
	For a fixed bias circuit the drain current was $1mA$, V_{DD} =12V,	
	determine drain resistance required if V _{DS} =10V?	
	a) 1KΩ	
	b) 1.5KΩ	
	c) 2KΩ	
88	d) 4KΩ	1M
	Answer: c) 2KΩ	
	Explanation: V _{DS} =V _{DD} -I _D R _D	
	$=>10=12-R_{D}\times 1mA$	
	$= R_{\rm D} = 2/1 \mathrm{mA} = 2 \mathrm{K}\Omega.$	
	Field effect transistors are different from BJTs in that they are	
	a) monopolar devices	
	b) bipolar devices	
	c) bidirectional device	
	d) none of the mentioned	
89		1M
	Answer: a) monopolar devices	
	Explanation: FETs are called monopolar devices, with only one	
	carrier type, either electrons or holes providing current flow	
	through the device. N-channel FETs employ electrons while p-	
	channel FETs employ holes as source of current.	

	JFET is a carrier device.	
	a) Unipolar	
	b) Bipolar	
	c) Minority	
90	d) Majority	1M
90	Answer: d) Majority	T IAI
	Explanation: The current flow in the device is due to majority	
	carriers. In an n-type JFET, it is due to the electrons and in a p-	
	type JFET- it is due to the holes.	
	he n-channel JFET, the pinch off voltage is	
	a) not greater than 0	
	b) greater than or equal to 0	
	c) less than or equal to 0	
	d) not less than 0	
91	Answer: a) not greater than 0	1M
	Explanation: The pinch off voltage for an N-channel JFET is	
	negative. The depletion region would extend into the N-channel	
	if the reverse bias in the gate to source voltage increases which	
	means that the gate to source voltage has to be negative since	
	the gate is N-type.	
	An N-channel JFET is	
	a) Always ON	
	b) Always OFF	
	c) Enhancement mode JFET	
	d) Has a p-type substrate	
	Answer: a) Always ON	
92	Explanation: An N-channel is always ON depletion mode JFET	1M
	since the channel for current flow from source to drain is always	
	present. This is in contrast to a P-channel JFET which needs to	
	be provided with a channel for the flow of current.	
	•	

	A JFET has three terminals, namely	
	a) cathode, anode, grid	
	b) emitter, base, collector	
	c) source, gate, drain	
93	d) none of the above	1M
	Answer : c) source, gate, drain	
	Explanation:A JFET has three terminals, namelysource, gate,	
	drain	
	The gate of a JFET is biased	
	a) reverse	
	b) forward	
	c) reverse as well as forward	
	d) none of the above	
94		1M
	Answer : a) reverse	
	Explanation:Gate source p-n junction is always reverse biased	
	because if it is forward then all the channel current will flow to	
	the Gate and not to the source, ultimately damaging JFET.	
	A common base configuration of a pnp transistor is analogous to	
	of a JFET	
	a) common source configuration	
	b) common drain configuration	
	c) common gate configuration	
95	d) none of the above	1M
	Answer : c) common gate configuration	
	Explanation: A common base configuration of a pnp transistor is	
	analogous to common gate configuration of a JFET	
	In a JFET, when drain voltage is equal to pinch-off voltage, the	
	depletion layers	
	a) almost touch each other	
96	b) have large gap	1M
	c) have moderate gap	
	d) none of the above	

	Answer : a) almost touch each other	
	Explanation:when drain voltage is equal to pinch-off voltage, the	
	depletion layers almost touch each other	
	In a JFET, IDSS is known as	
	a) drain to source current	
	b) drain to source current with gate shorted	
	c) drain to source current with gate open	
	d) none of the above	
97		1M
97	Answer : b) drain to source current with gate shorted	IM
	Explanation:IDSS is referred to as the drain current for zero	
	bias, because the gate-source voltage requires no bias voltage to	
	operate. The gate-source voltage is just zero. No voltage needs to	
	be applied to it	
	A JFET has high input impedance because	
	a) it is made of semiconductor material	
	b) input is reverse biased	
	c) of impurity atoms	
98	d) none of the above	1M
90		1 IVI
	Answer: b) input is reverse biased	
	Explanation:A JFET has high input impedance becauseinput is	
	reverse biased	
	JFET in properly biased condition acts as a	
	a) current controlled current source	
	b) voltage controlled voltage source	
	c) voltage controlled current source	
	d) impedance controlled current source	
99		1M
	Answer: c) voltage controlled current source	
	Explanation: JFET in properly biased condition acts as avoltage	

	The input resistance of a FET is of the order of	
	a) 100 Ω	
	b) 10 kΩ	
	c) 1 MΩ	
	d) 100 MΩ	1M
100		
100	Answer: d) 100 MΩ	
	Explanation: The input resistance of a FET is typically very high,	
	on the order of mega ohms (M Ω).	
	FET is which type of device?	
	a) 4 terminal voltage controlled device	
	b) 3 terminal voltage controlled device	
	c) 3 terminal current controlled device	
	d) 2 terminal current controlled device	
	Answer:b) 3 terminal voltage controlled device	
	Explanation:FET is a voltage-driven/controlled device, i.e. the	
	output current is controlled by the electric field applied& it is	
	three terminal device.	
	In which mode the JFET can operate?	
	a) depletion-mode only	
	b) enhancement-mode only	
	c) saturation mode only	
	d) noise mode only	
	Answer : a) depletion-mode only	
	Explanation:Unlike MOSFETs (metal-oxide-semiconductor field-	
	effect transistors), JFETs are predominantly depletion-mode	
	devices, meaning they are normally on and require a gate-	
	source voltage to turn them off. The physical structure and	
	doping of JFETs make it difficult to achieve enhancement mode	
	operation.	
	The most common semiconductor used for manufacturing of	

111			
нı	HT I	Ľ.	10
			13

- a) Gallium Arsenide
- b) Indium Arsenide
- c) Indium Gallium Arsenide
- d) Silicon

Answer:-d

Explanation:Usually the semiconductor of choice is *silicon*. Some chip manufacturers, most notably IBM and Intel, use an alloy of silicon and germanium (SiGe) in MOSFET ...

Thank You

https://shikshamentor.com/basic-electrical-electronics-enggfor-msbte-k-scheme/

Visit

https://shikshamentor.com/

