

https://shikshamentor.com/basic-electricalelectronics-engg-for-msbte-k-scheme/

312302 - Basic Electrical & Electronics Engg (BEE-Sem II) As per MSBTE's K Scheme CO / CM / IF / AI / AN / CW / DS

Unit IV	Special purpose diodes and their applications Mar	r <mark>ks - 12</mark>
S. N.	MSBTE Board Asked Questions	Marks
1.	 Why is there a sudden increase in current in Zener diode? a) Due to the rupture of ionic bonds b) Due to rupture of covalent bonds c) Due to viscosity d) Due to potential difference Answer: b. Due to rupture of covalent bonds Explanation: The sudden increase in current in a Zener diode is due to the rupture of the many covalent bonds present. Therefore, the Zener diode should be connected in reverse bias. 	1M
2.	 What is the semiconductor diode used as? a) Oscillator b) Amplifier c) Rectifier d) Modulator Answer: c. Rectifier Explanation: Semiconductor diode can be used as a rectifier. The function of a rectifier is that it converts an alternating current into direct current by allowing the current to pass 	1M

	through in one direction.	
3.	What is rectification?	
	a) Process of conversion of ac into dc	
	b) Process of conversion of low ac into high ac	
	c) Process of conversion of dc into ac	
	d) Process of conversion of low dc into high dc	
	Answer: a. Process of conversion of ac into dc	1M
	Explanation: Rectification is the process of conversion of	
	alternating current into direct current. The conversion first	
	powers to alternating current then use a transformer to	
	change the voltage, and finally rectifies power back to direct	
	current.	
4.	What is a Zener diode used as?	
	a) Oscillator	
	b) Regulator	
	c) Rectifier	
	d) Filter	
	Answer: b. Regulator	1M
	Explanation: Zener diode can be used as a voltage regulator.	
	They can also be used as shunt regulators to regulate the	
	voltage across small circuits. Zener diodes are always	
	operated in a reverse-biased condition.	
5.	Forward biasing of p-n junction offers infinite resistance.	
	a) True	
	b) False	
	Answer: b. False	
	Explanation: No, this is a false statement. Forward biasing of	1M
	p-n junction offers low resistance. In the case of an ideal p-n	
	junction, the resistance offered is zero. So, forward biasing	
	does not offer any resistance.	

6.	When a junction diode is reverse biased, what causes	
	current across the junction?	
	a) Diffusion of charges	
	b) Nature of material	
	c) Drift of charges	
	d) Both drift and diffusion of charges	
	Answer: c. Drift of charges	1M
	Explanation: The reverse current is mainly due to the drift of	
	charges. It is due to the carriers like holes and free electrons	
	passing through a square centimeter area that is	
	perpendicular to the direction of flow.	
7.	What can a p-n junction diode be used as?	
	a) Condenser	
	b) Regulator	
	c) Amplifier	
	d) Rectifier	
		1M
	Answer: d. Rectifier	
	Explanation: A junction diode can be used as a rectifier. The	
	rectifier converts alternating current into direct current.	
	During the positive half cycle, the diode is forward biased	
	and allows electric current through it.	
8.	In a PN junction with no external voltage, the electric field	
	between acceptor and donor ion is called a	
	a) Peak	
	b) Barrier	
	c) Threshold	435
	d) Path	1M
	Answer: (b) Barrier	
	Explanation:In p-n junction with no external voltage, the	
	electric field between the acceptor and the donor ions is	

	called a barrier.	
9.	In a PN junction the potential barrier is due to the charges on either side of the junction, these charges are	
	a) Majority carriers	
	b) Minority carriers	
	c) Both (a) and (b)	
	d) Fixed donor and accepter ions	1M
	Answer: (d) Fixed donor and accepter ions	114
	Explanation: The potential barrier created throughout the P-	
	N junction is due to the diffusion of electrons and holes, and	
	this potential barrier normally does not allow charging flow	
	through the junction.	
	The capacitance of a reverse-biased PN junction	
	a) Increases as reverse bias is increased	
	b) Decreases as reverse bias is increased	
	c) Increases as reverse bias is decreased	
10.	d) Is significantly low	114
	Answer: (c) Increases as reverse bias is decreased	1M
	Explanation: When reverse bias decreases, the depletion	
	region width "d" decreases. As "d" increases, the capacitance	
	increases.	
11.	For a PN junction diode, the current in reverse bias maybe	
	a) Few milliamperes	
	b) Between 0.2 A and 15 A	
	c) Few amperes	1M
	d) Few micro or nano amperes	
	Answer: (d) Few micro or nano amperes	

	Explanation:n a reverse-biased diode, the current is very	
	low, typically in the nanoampere (nA) to picoampere (pA)	
	range. This is because the reverse bias causes the depletion	
	region to widen, making it difficult for current to flow across	
	the diode. The diode acts as an insulator in the reverse bias	
	condition.	
12.	When PN junction is in forward bias, by increasing the	
	battery voltage	
	a) Circuit resistance increases	
	b) Current through P_N junction increases	
	c) Current through P_N junction decreases	
	d) None of the above	1 14
	Answer: (b) Current through P_N junction increases	1M
	Explanation:When the voltage increases up to	
	around measurable current starts to flow through the diode	
	in the forward direction. As the voltage moves a little above ,	
	the current through the diode rises rapidly.	
13.	When a PN junction is reverse biased	
	a) Holes and electrons tend to concentrate towards the junction	
	b) The barrier tends to break down	
	c) Holes and electrons tend to move away from the junction	
	d) None of these	
	Answer: (c) Holes and electrons tend to move away from the	
	junction	1M
	Explanation: Reverse bias applied to a p-n junction	
	diode raises the potential barrier because p-type material	
	connected to the negative terminal and pulls the holes away	
	from the junction. Similarly, n-type material connected to the	
	positive terminal and pulls the electrons	

14.	A PN junction	
	a) Has low resistance in forward as well as reverse directions	
	b) Has high resistance in forward as well as reverse directions	
	c) Conducts in the forward direction only	
	d) Conducts in the reverse direction only	
	Answer: (c) Conducts in the forward direction only	
	Explanation:Diode is a combination of p-type and n-type	1M
	semiconductors. This combination creates a potential	
	barrier at the junction. Therefore, the external power source	
	must overcome the potential barrier to conduct. In the	
	forward bias, the diode conducts and in the reverse bias, it	
	will not conduct.	
15.	A PN junction is said to be forward-biased when	
	a) The positive terminal of the battery is connected to P-side	
	and the negative side to the N-side	
	b) Junction is earthed	
	c) N-side is connected directly to the p-side	
	d) The positive terminal of the battery is connected to N-side	
	and the negative side to the P-side.	1M
	Answer: (a) The positive terminal of the battery is connected	
	to P-side and the negative side to the N-side	
	Explanation:In forward biasing, the p-type is connected with	
	the positive terminal and the n-type is connected with	
	negative terminal of the battery.	
16.	PN Junction is also called	
	a) diode	
	b) transistor	1M
	c) triode	

	d) inductor	
	Answer: a) Diode	
	Explanation:Pn junctions are called diodes because they allow the flow of current in one direction and not in another, and also because they are two terminals or distinct electrodes, which are anode and cathode.	
17.	The P-type region of diode is called	
	a) cathode	
	b) anode	
	c) grid	
	d) both a & b	
	Answer: b) anode	1M
	Explanation:The anode is a positive terminal in a forward-	
	biased p-n junction diode (that p-type is linked to the	
	positive terminal and n-type is connected to the negative).	
	On this type of junction, the cathode terminal is negative. The	
	anode is a positively charged electrode or wire that charges the p-n junction with holes.	
18.	The N-type of region of PN Junction diode is called	
	Cathode. True / False	
	Answer: True	
	Explanation:We call the lead affixed to the N-type	1M
	semiconductor the cathode. Therefore, the cathode is the negative side of a diode.	
19.	When a diode isbias then it shows the conventional	
	direction of current.	
	a) forward	1M
	b) reverse	

	Answer:a) forward	
	Explanation:The Conventional flow of current is from P side	
	to N side. As in a forward bias p-n junction the electrons	
	move from n side to p side, hence causing the conventional	
	current flow from P to N. *Conventional current flow is	
	always opposite to the direction of electrons flow.	
20.	How can we identify the positive and negative leads of a	
	diode?	
	a) colour coding	
	b) colour band	
	c) both a & b	
	d) none is correct	1M
	Answer: c) both a & b	
	Explanation:We can identify the positive and negative leads	
	of a diode by using colour coding colour band	
21.	PN Junction diode is a device.	
	a) one way	
	b) two way	
	c) double way	
	d) b & c are correct	
	Answer: a) one way	1 M
	Explanation: A diode is often referred to as a one-way valve	
	because it allows current to flow in only one direction. When	
	a diode is forward-biased, it conducts current, but when it is	
	reverse-biased, it effectively blocks the flow of current.	

22.	The barrier potential of germanium is .3v. True / False Answer: True Explanation:Germanium (Ge) has a potential barrier of 0.3 eV	1M
23.	The barrier potential of silicon is	
	a) .3v b) .7v	
	c) .5v	
	d) .4v	1M
	Answer: b) 0.7 v	
	Explanation:Silicon (Si) has a potential barrier of 0.7 eV	
24.	The reverse saturation (Is) or maximum (Io) current during reverse bias of a PN junction diode depends on	
	a) temperature	
	b) doping level	
	c) physical size of junction	
	d) all are correct	1M
	Answer: d)all are correct	
	Explanation:The reverse saturation (Is) or maximum (Io)	
	current during reverse bias of a PN junction diode depends	
	on temperature, doping level, physical size of junction	
25.	How to protect a diode from increasing voltages of	
	breakdown level?	
	a) Filter capacitor	1M
	b) Limiting resistor	

	c) Zener diode	
	d) None is correct	
	Answer: b) Limiting resistor	
	Explanation: There is a series resistor connected to the	
	circuit in order to limit the current into the diode. It is	
	connected to the positive terminal of the d.c. It works in such	
	a way the reverse-biased can also work in breakdown	
	conditions.	
26.	Zener diodes are also known as	
	a) Voltage regulators	
	b) Forward bias diode	
	c) Breakdown diode	
	d) None of the mentioned	
		1M
	Answer: c) Breakdown diode	
	Explanation: Zener diodes are used as voltage regulators but	
	they aren't called voltage regulators. They are called	
	breakdown diodes since they operate in breakdown region.	
27.	Which of the following is true about the resistance of a Zener	
	diode?	
	a) It has an incremental resistance	
	b) It has dynamic resistance	
	c) The value of the resistance is the inverse of the slope of the	
	i-v characteristics of the Zener diode	
	d) All of the mentioned	1M
		1141
	Answer: d) All of the mentioned	
	Explanation: All of the statements are true for the resistance	
	of the zener diode.	

28.	Zener diode is designed to specifically work in which region	
	without getting damaged?	
	a) Active region	
	b) Breakdown region	
	c) Forward bias	
	d) Reverse bias	
	Answer: b) Breakdown region	1M
	Explanation: The Zener diode is a specifically designed diode	
	to operate in the breakdown region without getting	
	damaged. Because of this characteristic, it can be used as a	
	constant-voltage device.	
29.	What is the level of doping in Zener Diode?	
	a) Lightly Doped	
	b) Heavily Doped	
	c) Moderately Doped	
	d) No doping	
	Answer: b) Heavily Doped	1M
	Explanation: A Zener diode is heavily doped so that the	
	breakdown voltage occurs at a lower voltage. If it were	
	lightly/moderately doped, it would breakdown at a	
	comparatively high voltage and, thus, would not be able to	
	serve its purpose.	
30.	When the reverse voltage across the Zener diode is increased	
	a) The value of saturation current increases	
	b) No effect	1M
	c) The value of cut-off potential increases	
	d) The value of cut-off potential decreases	

	Answer: c) The value of cut-off potential increases	
	Explanation: As the frequency of the incident radiation increases, the kinetic energies of the emitted electron are higher and therefore require more repulsive force to be applied to stop them. The value of saturation current increases, as the intensity of the incident radiation, increases.	
	The value of cut-off potential decreases, as the frequency decreases.	
31.	Zener Diode is mostly used as a) Half-wave rectifier b) Full-wave rectifier c) Voltage Regulator d) LED Answer: c) Voltage Regulator Explanation: The Zener diode, once in the breakdown region, keeps the voltage in the circuit to which it is connected as	1M
32.	Keeps the voltage in the circuit to which it is connected as constant. Thus it is widely used as a voltage regulator. Which of the following is the correct symbol for the zener diode?	
	a) b) c)	1M

	d)	
	Answer: d	
	Explanation: The following figure is the correct symbol for the Zener diode.	
	The following figure is the symbol of a normal p-n junction diode.	
33.	In normal junctions, the breakdown is same as Zener breakdown. a) True b) False	
	Answer: b) False Explanation: In normal p-n unction diodes, the breakdown takes place by avalanche breakdown which is different than the Zener breakdown. Zener diode is specifically made to operate in that region.	1M
34.	The depletion region of the Zener diode is a) Thick b) Normal c) Very Thin d) Very thick	1M

	Answer: c) Very Thin	
	Explanation: Zener diode is fabricated by heavily doping	
	both p- and n-sides of the junction, which results in an	
	extremely thin depletion region.	
35.	A light emitting diode is	
	a) Heavily doped	
	b) Lightly doped	
	c) Intrinsic semiconductor	
	d) Zener diode	
	Answer: a) Heavily doped	1M
	Explanation: A light emitting diode, LED, is heavily doped. It	
	works under forward biased conditions. When the electrons	
	recombine with holes, the energy released in the form of	
	photons causes the production of light.	
36.	Which of the following materials can be used to produce	
	infrared LED?	
	a) Si	
	b) GaAs	
	c) CdS	
	d) PbS	
		1M
	Answer: b) GaAs	
	Explanation: GaAs has an energy band gap of 1.4 eV. It can be	
	used to produce infrared LED. Various other combinations	
	-	
	can be used to produce LED of different colors.	
37.	The reverse breakdown voltage of LED is very low.	
	a) True	
	b) False	
	Answer: a) True	1M
	Explanation: The reverse breakdown voltages of LEDs are	
	very low, typically around 5 V. So, if access voltage is	
		1

What should be the band gap of the semiconductors to be	
	1
used as LED?	
a) 0.5 eV	
b) 1 eV	
c) 1.5 eV	
d) 1.8 eV	
	4.14
	1M
Answer: d) 1.8 eV	
Explanation: Semiconductors with band gap close to 1.8 eV	
are ideal materials for LED. They are made with	
semiconductors like GaAs, GaAsP etc.	
What should be the biasing of the LED?	
a) Forward bias	
b) Reverse bias	
c) Forward bias than Reverse bias	
d) No biasing required	
Answer: a) Forward bias	1M
Explanation: The LED works when the p-n junction is	
Which of the following would have highest wavelength?	
	1M
	 c) 1.5 eV d) 1.8 eV Answer: d) 1.8 eV Explanation: Semiconductors with band gap close to 1.8 eV are ideal materials for LED. They are made with semiconductors like GaAs, GaAsP etc. What should be the biasing of the LED? a) Forward bias b) Reverse bias c) Forward bias than Reverse bias d) No biasing required Answer: a) Forward bias Explanation: The LED works when the p-n junction is forward biased i.e., the p- side is connected to the positive terminal and n-side to the negative terminal. Which of the following would have highest wavelength?

	a) A	
	b) B	
	c) C	
	d) D	
	Answer: a) A	
	Explanation: In the I-V characteristic of an LED, as the	
	frequency increases, the voltage required to achieve the	
	same current increases. Hence A would have the highest	
	wavelength.	
41.	Increase in the forward current always increases the	
	intensity of an LED.	
	a) True	
	b) False	
	Answer: b) False	1M
	Explanation: As the forward current is increased for an LED,	
	the intensity of the light increases up to a certain maximum	
	value. After that, the intensity starts decreasing.	
42.	Which process of the Electron-hole pair is responsible for	
	emitting of light?	
	a) Generation	
	b) Movement	
	c) Recombination	
	d) Diffusion	
		1 M
	Answer: c) Recombination	
	Explanation: When the recombination of electrons with	
	holes takes place, the energy is released in the form of	
	photon. This photon is responsible for the emission of light.	

43.	Which of the following is not a characteristic of LED?	
	a) Fast action	
	b) High Warm-up time	
	c) Low operational voltage	
	d) Long life	
		1M
	Answer: b) High Warm-up time	114
	Explanation: The warm-up time required should be lower so	
	that the lighting action can take place faster. This is one of	
	the advantages LED have over incandescent lamps.	
	the auvantages LED have over incancescent lamps.	
44.	LEDs work on the principle of	
	a) Electromagnetic induction	
	b) Conduction	
	c) Electroluminescence	
	d) Induction	
	Answer: c) Electroluminescence	1M
	Explanation: Electroluminescence is an electrical and optical	
	phenomenon where material emits light when electricity	
	flows through it.	
45.	State true or false: High warm-up time is needed for LEDs.	
	a) TRUE	
	b) FALSE	
	Answer: b) FALSE	1M
	Explanation: little or no warm-up time is needed for light	
	emitting diodes.	
46.	Aluminium alloys are used to obtain light.	
		1M

	a) Red	
	b) Orange	
	c) Yellow	
	d) All of the above	
	Answer: d) All of the above	
	Explanation: Aluminium alloys are used to obtain yellow,	
	orange, and red colour lights.	
47.	Why is there a sudden increase in current in Zener diode	
	a) Due to the rupture of ionic bonds	
	b) Due to rupture of covalent bonds	
	c) Due to viscosity	
	d) Due to potential difference	
	Answer: b) Due to rupture of covalent bonds	
	Explanation: The sudden increase in current in a Zener diode	1M
	is due to the rupture of the many covalent bonds present.	
	Therefore, the Zener diode should be connected in reverse	
	bias.	
48.	In a pure semiconductor crystal, if current flows due to	
	breakage of crystal bonds, then what is the semiconductor is	
	called?	
	a) Acceptor	
	b) Donor	
	c) Intrinsic semiconductor	
	d) Extrinsic semiconductor	1M
	Answer: c) Intrinsic semiconductor	
	Explanation: Pure semiconductors are called intrinsic	
	semiconductors. The number of electrons in the conduction	
	band will be equal to the number of holes in the valence	
	band. Intrinsic semiconductors are also called undoped and	

	i-type semiconductors	
49.	In a p-type semiconductor, germanium is doped with which	
	of the following?	
	a) Gallium	
	b) Copper	
	c) Phosphorous	
	d) Nitrogen	
	Answer: a) Gallium	1M
	Explanation: Substances such as gallium, boron, and	
	aluminum are all trivalent atoms. These are called acceptor	
	impurities and they produce p-type semiconductors.	
	Therefore, germanium is doped with gallium in a p-type	
	semiconductor	
50.	What are the majority charge carriers in P-type	
	semiconductors?	
	a) Electrons	
	b) Holes	
	c) Negative Ions	
	d) Positive Ions	
	Answer: b) Holes	1M
	Explanation: Holes are the majority charge carriers in P-type	\star
	semiconductors. These holes are actually electron vacancies	1.00
	that contain positive charge. The holes are responsible for	
	the conduction in p-type semiconductors.	(*)
	A Compare of the	1
5.1	Which of the following is operated in forward bias?	
	a) LED	
	b) Zener diode	1M

	 d) Solar cell Answer: a) LED Explanation: A light-emitting diode (LED) converts electric energy into light energy. A LED is a heavily doped p-n junction which under forward bias emits spontaneous radiation. The semiconductor used for the fabrication of 	
52.	 visible LEDs must at least have a bandgap of 1.8 eV. In a shunt capacitor filter, the mechanism that helps the removal of ripples is a) The current passing through the capacitor b) The property of capacitor to store electrical energy c) The voltage variations produced by shunting the capacitor d) Uniform charge flow through the rectifier Answer: b) The property of capacitor to store electrical energy Explanation: Filtering is frequently done by shunting the load with capacitor. It depends on the fact that a capacitor stores energy when conducting and delivers energy during non-conduction. Throughout this process, the ripples are eliminated. 	1M
	The charge (q) lost by the capacitor during the discharge time for shunt capacitor filter. a) IDC*T b) IDC/T c) IDC*2T d) IDC/2T Answer: a) IDC*T Explanation: The "T" is the total non-conducting time of capacitor. The charge per unit time will give the current flow.	1M

53.	Which of the following are true about capacitor filter?	
	a) It is also called as capacitor output filter	
	b) It is electrolytic	
	c) It is connected in parallel to load	
	d) It helps in storing the magnetic energy	
	Answer: b) It is electrolytic	1 M
	Explanation: The rectifier may be full wave or half wave. The	
	capacitors are usually electrolytic even though they are large	
	in size	
54.	The rms ripple voltage (Vrms) of a shunt filter is	
	a) IDC/2 $\sqrt{3}$	
	b) IDC2 $\sqrt{3}$	
	c) IDC/ $\sqrt{3}$	
	d) IDC√3	
	Answer: a) IDC/2 $\sqrt{3}$	1M
	Explanation: The ripple waveform will be triangular in	
	nature. The rms value of this wave is independent of slopes	
	or lengths of straight lines. It depends only on the peak	
	value.	
55.	What is the effect of an inductor filter on a multi frequency	
	signal?	
	a) Dampens the AC signal	
	b) Dampens the DC signal	
	c) To reduce ripples	
	d) To change the current	1M
	Answer: a) Dampens the AC signal	
	Explanation: Presence of inductor usually dampens the AC	
	signal. Due to self-induction induces opposing EMF or	
	changes in the current.	

56.	The inductor filter gives a smooth output because	
	a) It offers infinite resistance to ac components	
	b) It offers infinite resistance to dc components	
	c) Pulsating dc signal is allowed	
	d) The ac signal is amplified	
	Answer: a) It offers infinite resistance to ac components	
	Explanation. The inductor does not allow the as components	1M
	Explanation: The inductor does not allow the ac components	
	to pass through the filter. The main purpose of using an inductor filter is to avoid the ripples. By using this property,	
	the inductor offers an infinite resistance to ac components	
	and gives a smooth output	
	and gives a smooth output	
57.	Which of the following can be a source of supply in dc power	
	supplies?	
	a) Battery	
	b) Dry cell	
	c) Full wave rectifier	
	d) All of the mentioned	
		1M
	Answer: d) All of the mentioned	
	Explanation: Source of supply will be a battery, dry cell or	
	full wave rectifier etc.	
58.	Which of the application's filters used for?	
	a) Reducing ripples	
	b) Increasing ripples	
	c) Increasing phase change	
	d) Increasing amplitude	1 M
	Answer: a) Reducing ripples	

	for eliminating ac components from a signal.	
59.	Which of the following represent a change of output voltage	
	when load current is increased?	
	a) Line regulation	
	b) Load regulation	
	c) Current regulation	
	d) Voltage regulation	
		11
	Answer: b) Load regulation	
	Answer. Dj Loau regulation	
	Explanation: Load regulation is the process of fractional	
	change of output voltage when load current is increased	
	from zero to maximum value.	
60.	Why zener diodes are provided in dc supply?	
	a) For forward conduction	
	b) For reverse conduction	
	c) For reference voltage	
	d) For increasing amplitude	
		11
	Answer: c) For reference voltage	11.
	Answer. cj for reference voltage	
	Explanation: Zener diodes in dc power supplies are used for	
	providing a reference voltage used for comparison.	
61.	Stability of output voltage is entirely depended on	
	a) Stability of transformer	
	b) Stability of zener diode	4 1
	c) Quality of wires	1M
	d) Capacitor values	

	Answer: b) Stability of zener diode	
	Explanation: Stability of zener diodes used is an important	
	factor in determining the stability of output voltage in dc	
	power supply.	
62.	Which of the following are not the standard value of Zener	
	diodes?	
	a) 5.1 V	
	b) 5.6 V	
	c) 5.8V	
	d) 6.2V	
		1M
	$(Answork c) \in 9\mathbf{V}$	
	Answer: c) 5.8V	
	Explanation: Standard values of zener voltages are 5.1V,	
	5.6V, 6.2V and 9.1V etc.	
63	Which of the following can be used in series with a Zener	
	diode so that combination has almost zero temperature	
	coefficient?	
	a) Diode	
	b) Resistor	
	c) Transistor	
	d) MOSFET	
	Answer: a) Diode	1M
	Explanation: If a Zener diode of TC of about -2mV is	
	connected with a forward diode (which has a TC of about	
	+2mV) in series, the combination can be used to obtain a	
	very low (close to zero) TC.	

64	is used for critical loads where temporary power	
	failure can cause a great deal of inconvenience.	
	a) SMPS	
	b) UPS	
	c) MPS	
	d) RCCB	
	Answer: b) UPS	1M
	Explanation: Uninterruptible Power Supply is used where	
	loads where temporary power failure can cause a great deal	
	of inconvenience.	
65	is used in the rotating type UPS system to supply the	
	mains.	
	a) DC motor	
	b) Self excited DC generator	
	c) Alternator	
	d) Battery bank	
		1M
	Answer: c) Alternator	
	Explanation: When the supply is gone, the diesel engine is	
	started, which runs the alternator and the alternator	
	supplies power to the mains. Non-rotating type UPS are not	
	used anymore.	
	-	
66	Static UPS requires	
	a) only rectifier	
	b) only inverter	
	c) both inverter and rectifier	
	d) none of the mentioned	1M
	Answer: c) both inverter and rectifier	
	Explanation: Rectifier to converter the dc from the battery to	
	Explanation, receiper to converter the defibilit the battery to	

	ac. Inverter to charge the battery from mains.	
67	Usually batteries are used in the UPS systems.	
	a) NC	
	b) Li-On	
	c) Lead acid	
	d) All of the mentioned	
		1M
	Answer: c) Lead acid	
	Explanation: Lead acid batteries are cheaper and have	
	certain advantages over the other types. NC batteries would	
	however be the best, but are three to four times more	
	expensive than Lead Acid.	
67	What is the expansion of UPS?	
	a) Uninterrupted Power System	
	b) Uninterrupted Power Supply	
	c) Uninterrupted Power Solution	
	d) Uninterrupted Power Section	1 M
	Answer: Uninterrupted Power Supply	
	Explanation: The full form of UPS is Uninterrupted Power	
	Supply	
68	Which electrical / electronic devicerequires ups?	
	a) Air conditioner	
	b) Micro wave oven	
	c) Computer	1M
	d) Television	
	Answer: Computer	

	Explanation: Computer is required UPS for back up.	
69	What is the number of capacitors and inductors used in a CLC filter?	
	a) 1, 2 respectively	
	b) 2, 1 respectively	
	c) 1, 1 respectively	
	d) 2, 2 respectively	
		11
	Answer: b) 2, 1 respectively	
	Explanation: A very smooth output can be obtained by a filter	
	consisting of one inductor and two capacitors connected	
	across each other. They are arranged in the form of letter 'pi'.	
	So, these are also called as pi filters.	
70	Major part of the filtering is done by the first capacitor in a	
	CLC filter because	
	a) The capacitor offers a very low reactance to the ripple	
	frequency	
	b) The capacitor offers a very high reactance to the ripple	
	frequency	
	c) The inductor offers a very low reactance to the ripple	
	frequency	
	d) The inductor offers a very high reactance to the ripple	
	frequency	1N
	Answer: a) The capacitor offers a very low reactance to the	
	ripple frequency	
	Explanation: The CLC filters are used when high voltage and	
	low ripple frequency is needed than L section filters. The	
	capacitor in a CLC filter offers very low reactance to the	
	ripple frequency. So, maximum of the filtering is done by the	
	first capacitor across the L section part.	

70	The inductor is placed in the L section filter because	
	a) It offers zero resistance to DC component	
	b) It offers infinite resistance to DC component	
	c) It bypasses the DC component	
	d) It bypasses the AC component	
	Answer a) It offers gore resistance to DC component	1M
	Answer: a) It offers zero resistance to DC component	
	Explanation: The inductor offers high reactance to ac	
	component and zero resistance to dc component. So, it	
	blocks the ac component which cannot be bypassed by the capacitors.	
71	In practice the output from the diode rectifier has	
	a) AC component only	
	b) DC component only	
	c) AC + DC component	
	d) None of the mentioned	
		434
		1M
	Answer: c) AC + DC component	
	Explanation: The output contents along with the DC	
	components the AC harmonics which does no useful work &	
	reduces the efficiency.	
78	Choose the correct statement	
70	a) The AC component in the output of rectifier does the	
	useful work	
	b) The AC component in the output of rectifier increases the	
	efficiency of the system	
	c) The AC component in the output of rectifier causes ohmic	114
	losses	1M
	d) The AC component in the output of rectifier does not affect	
	the operation	
	Answer: c) The AC component in the output of rectifier	

	causes ohmic losses	
	Explanation: A rectifier is used to convert AC to DC. Lower	
	the AC (Non-DC) components in the output lower are the	
	ohmic losses.	
	An L filter is connected	
79	a) in series	
	b) in parallel	
	c) in both series and parallel	
	d) none of the mentioned	
		1M
	Answer: a) in series	
	Explanation: Inductor (L) has a very important property that	
	the current through it cannot change rapidly. We can make	
	use of this property by connecting it in series.	
0.0	In case of an L filter connected with a rectifier in series with	
80	the load, it offers impedance to ac whereas	
	resistance to dc respectively.	
	a) high, high	
	b) high, low	
	c) low, high	
	d) low, low	1M
	Answer: b)) high, low	
	Explanation: It offers high impedance to AC such as the AC	
	ripples do not pass through the load.	
	In case of a C filter, the AC is not allowed to pass to the load	
81	by	
	a) offering it high impedance	
	b) offering it low impedance	1M
	c) short circuiting the AC component	
	d) open circuiting the AC component	

	Answer: c) short circuiting the AC component	
	Explanation: AC ripples are not allowed to pass, by S.C the AC ripples as the C is always connected in parallel with the load.	
82	A capacitor filter or C filter can be used in a rectifier by connecting it a) in parallel with the load b) in series with the load c) in parallel with the supply d) in series with the supply	1M
	Answer: a) in parallel with the load Explanation: AC ripples are not allowed to pass, by S.C the AC ripples as the C is always connected in parallel with the load.	
83	In a shunt capacitor filter, the mechanism that helps the removal of ripples is a) The current passing through the capacitor b) The property of capacitor to store electrical energy c) The voltage variations produced by shunting the capacitor d) Uniform charge flow through the rectifier	
	Answer: b) The property of capacitor to store electrical energy Explanation: Filtering is frequently done by shunting the load with capacitor. It depends on the fact that a capacitor stores energy when conducting and delivers energy during non-conduction. Throughout this process, the ripples are eliminated.	1M
	non-conduction. Throughout this process, the ripples are	

04	The cut-in point of a capacitor filter is	
84	a) The instant at which the conduction starts	
	b) The instant at which the conduction stops	
	c) The time after which the output is not filtered	
	d) The time during which the output is perfectly filtered	
	Answer: a) The instant at which the conduction starts	1M
	Explanation: The capacitor charges when the diode is in ON	
	state and discharges during the OFF state of the diode. The	
	instant at which the conduction starts is called cut-in point.	
	The instant at which the conduction stops is called cut-out	
	point.	
85	The rectifier current is a short duration pulses which cause	
00	the diode to act as a	
	a) Voltage regulator	
	b) Mixer	
	c) Switch	
	d) Oscillator	
		1M
	Answer: c) Switch	
	Explanation: The diode permits charge to flow in capacitor	
	when the transformer voltage exceeds the capacitor voltage.	
	It disconnects the power source when the transformer	
	voltage falls below that of a capacitor.	
86	The output waveform of CLC filter is superimposed by a	
	waveform referred to as	
	a) Square wave	
	b) Triangular wave	
	c) Saw tooth wave	1M
	d) Sine wave	

	Answer: c) Saw tooth wave Explanation: Since the rectifier conducts current only in the	
	forward direction, any energy discharged by the capacitor	
	will flow into the load. This result in a DC voltage upon which	
	is superimposed a waveform referred to as a saw tooth wave.	
87	A PN junction has a thickness of the order	
07	a. 1 cm	
	b. 1 mm	
	c. 10-6 m	
	d. 10-12 cm	
	Answer: (c) 10-6 m	1M
	Explanation: When P- type semiconductor is mixed with N -	
	type semiconductor, PN - junction is formed. There is very	
	small region { which is in order of micro metre } . This region	
	is known as depletion region. so, the thickness of junction {	
	depletion region } is in order of 10 – 6 m	
0.0	In the depletion region of an unbiased PN junction diode	
88	there are	
	a. Only electrons	
	b. Only holes	
	c. Both electrons and holes	
	d. Only fixed ions	1 8/
	Answer: (d) Only fixed ions	1M
	Explanation:Depletion region or depletion layer is a region	
	in a P-N junction diode where no mobile charge carriers are	
	present. Depletion layer acts like a barrier that opposes the	

89	In Zener diode, the Zener breakdown takes place	
	a) Below 6 V	
	b) At 6 V	
	c) Above 6 V	
	d) None of the above	1M
	Answer: a) Below 6 V	1 141
	Explanation: Zener breakdown occurs where breakdown	
	voltage is below 6 V and Avalanche breakdown occurs for	
	other voltages.	
90	A Zener diode when biased correctly	
	a) Never overheats	
	b) Has a constant voltage across it	
	c) Acts as a fixed resistance	
	d) Has a constant current passing through it	1 M
	Answer: c) Has a constant voltage across it	
	Explanation: When biased correctly, the Zener diode has a	
	constant voltage across it.	
91	Depletion region behaves as	
	a) Semiconductor	
	b) Insulator	
	c) Conductor	
	d) High resistance	1M
	Answer: b) Insulator	
	Explanation: In the depletion region, an electric field exists	
	that quickly sweeps out electron-hole pairs that may be	
L	thermally generated and reduces the equilibrium	

	concentration of the charge carriers to exceedingly low	
	levels. Under these circumstances. This region, called the	
	depletion layer, behaves as an insulator.	
00	The advantages of a pi-flter is	
92	a) low output voltage	
	b) low PIV	
	c) low ripple factor	
	d) high voltage regulation	
	Answer: c) low ripple factor	1 M
	Explanation: Due to the involvement of 2 capacitors in	
	addition with one inductor it provides improved filtering	
	action. This leads to decrement in ripple factor. A low ripple	
	factor means the ratio of current due to AC ripples and direct	
	Current is low.	
93	The basic purpose of flter at the output of a rectifer is to	
	a) minimize variations in ac input signal	
	b) suppress harmonics in rectifed output	
	c) remove ripples from the rectifed output	
	d) stabilize dc output voltage	
	Answer: c) remove ripples from the rectifed output	1 M
	Explanation: Rectifier is an electrical device that converts AC	
	into DC by using one or more p-n junction diodes. But the	
	output of rectifiers is pulsating (means contains both AC	
	component and DC component). Hence, to remove all the AC	
	components we use filters.	

94	What is correct about the ripple factor of LC flter?	
74	a) Increases with the load current	
	b) increases with the load resistance	
	c) remains constant with the load current	
	d) has the lowest value	
	Answer: c) remains constant with the load current	1M
	Explanation: the ripple factor of LC flterremains constant	
	with the load current	
95	Commercial power supplies have voltage regulation	
	A. of 10%	
	B. of 15%	
	C. of 25%	
	D. within 1%	1M
	answer: d) within 1%	
	Explanation: Commercial power supplies have voltage	
	regulation within 1%	
0.6	In an unregulated power supply, if load current increases,	
96	the output voltage	
	a) Remains the same	
	b) Decreases	
	c) Increases	
	d) None of the above	
	answer: b)Decreases	1M
	Explanation: The DC voltage output is dependent on an	
	internal voltage reduction transformer and should be	
	matched as closely as possible to the current required by the	
	load. Typically the output voltage will decrease as the	
	current output to the load increases.	

97	Two similar 15 V Zeners are connected in series. What is the regulated output voltage?	
	a) 15 V	
	b) 5 V	
	c) 30 V	
	d) 45 V	1M
	Answer: c) 30 V	
	Explanation: As voltage and watt rating is more useful in real	
	applications. Now if we connect two 15 volts of Zener diodes	
	in series as above, then the total voltage will be 30 volts.	
98	The voltage regulator output impedance is	
	a) Very small	
	b) Large	
	c) Infinite	
	d) None	
	Answer: a) Very small	
	Explanation:A low impedance allows the source to deliver	1M
	current without significant voltage drop, ensuring the	
	voltage remains stable even when connected to different	
	loads. This is important for many electrical and electronic	
	systems where a stable voltage is required for proper operation.	
99	A Zener diode utilises characteristic for voltage regulation	
	a) Forward	1M
	b) Reverse	
	c) Both forward and reverse	

	d) None of the above	
	Answer : b) Reverse	
	Explanation: A Zener diode utilises reverse characteristic for	
	voltage regulation	
	A Zener diode is used as a voltage regulating device	
	a) Shunt	
100	b) Series	
	c)Series-shunt	
	d) None of the above	
	Answer : a) Shunt	1M
	Explanation: The Zener diode begins regulation operation	
	only when the input voltage (V_{in}) is equal (or more than)	
	Zener breakdown voltage (Vz). Otherwise, the diode remains	
	"Off-state". Due to the parallel operation with load, Zener	
	diodes are referred to as shunt voltage regulators.	
	Which of the following is true about the temperature	
	coefficient or TC of the Zener diode?	
	a) For Zener voltage less than 5V, TC is negative	
101	b) For Zener voltage around 5V, TC can be made zero	
	c) For higher values of Zener voltage, TC is positive	
	d) All of the mentioned	
	Answer: d) All of the mentioned	1M
	Explanation: All of the mentioned are true for the TC of a	
	zener diode.	

	Zener diodes can be effectively used in voltage regulator.	
	However, they are these days being replaced by more	
	efficient	
	a) Operational Amplifier	
102	b) MOSFET	
	c) Integrated Circuits	
	d) None of the mentioned	1M
		I IVI
	Answer: c) Integrated Circuits	
	Explanation: ICs have been widely adapted by the industries	
	over conventional zener diodes as their better replacements	
	for a voltage regulators.	
	Which of the following is true about the resistance of a Zener	
	diode?	
103	a) It has an incremental resistance	
	b) It has dynamic resistance	
	c) The value of the resistance is the inverse of the slope of the	
	i-v characteristics of the Zener diode	
	d) All of the mentioned	
		1M
	Answer: d) All of the mentioned	
	Explanation: All of the statements are true for the resistance	
	of the zener diode.	

Thank You

https://shikshamentor.com/basic-electrical-electronics-enggfor-msbte-k-scheme/

Visit

https://shikshamentor.com/

