

https://shikshamentor.com/basic-electricalelectronics-engg-for-msbte-k-scheme/

312302 - Basic Electrical & Electronics Engg (BEE-Sem II)

As per MSBTE's K Scheme CO / CM / IF / AI / AN / CW / DS

Unit II	Electrical Machines Marl	ks - 12
S. N.	MSBTE Board Asked Questions	Marks
1	What is Transformer? a) Transformer is a device used to convert low alternating voltage to a high alternating voltage b) Transformer is a device used to convert alternating current to direct current c) Transformer is a device used to convert low alternating current to a high alternating current d) Transformers are used only for low alternating voltage Answer: a. Transformer is a device used to convert low alternating voltage to a high alternating voltage Explanation: A Transformer is a device used to convert low alternating voltage to a high alternating voltage and vice versa. Transformers are based on the phenomena of mutual induction. A transformer consists of a soft iron coil with two coils wound around it which are not connected to one another.	1M
2	What is the function of a transformer? a) Transformer is used to step down or up the AC voltages and	1M

	currents	
	b) Transformer is used to step down or up the DC voltages and	
	currents	
	c) Transformer converts DC to AC voltages	
	d) Transformer converts AC to DC voltages	
	Answer: a. Transformer is used to step down or up the AC	
	voltages and currents	
	Explanation: A Transformer does not work on DC and operates	
	only on AC, therefore it Step up or Step down the level of AC	
	Voltage or Current, by keeping frequency of the supply	
	unaltered on the secondary side.	
	What is the working principle of a Transformer?	
	a) Transformer works on the principle of self-induction	
	b) Transformer works on the principle of mutual induction	
	c) Transformer works on the principle of ampere law	
	d) Transformer works on the principle of coulomb law	
3		1M
	Answer: bTransformer works on the principle of mutual	
	induction	
	Explanation: A transformer is an electrical device used to vary	
	the input voltage. Transformer works on the principle of mutual	
	induction. Transformer ratings are given in	
	a) kVA	
	b) HP	
	c) kVAR	
	d) kW	
	u) NV	434
4		1M
	Answer: a. kVA	
	Explanation: There are two types of losses in a transformer,	
	Copper Losses and Iron Losses or Core Losses or Insulation	

	Lossos Connon lossos (I2D) donando en avevent naccina three	
	Losses. Copper losses (I ² R) depends on current passing through	
	transformer winding while Iron losses or Core Losses or	
	Insulation Losses depends on Voltage. That's why the rating of	
	Transformer is in kVA.	
	What is the current transformer?	
	a) transformer used with an A.C. voltmeter	
	b) transformer used with an A.C. ammeter	
	c) transformer used with an D.C. voltmeter	
	d) transformer used with an D.C. ammeter	
5		1 M
		1M
	Answer: b. transformer used with an A.C. ammeter	
	Explanation: A transformer used to extend the range of an A.C.	
	ammeter is known as a current transformer. A current	
	transformer is also abbreviated as C.T.	
	Transformer core is generally made of	
	a) Cannot be determined	
	b) Can be made with any of the above method	
	c) By stacking large number of sheets together	
	d) Single block of core material	
6	Answer: c. By stacking large number of sheets together	1M
	Explanation: Transformer core experiences eddy current losses	
	when transformer is in the operations. In order to reduce eddy	
	current losses, it is advisable to use large number of sheets	
	laminated from each other are stick together than using one	
	single block.	
	Single block	
	The purpose of the transformer core is to provide	
	a) Low reluctance path	
	b) High inductive path	1M
7	c) High capacitive path	1141
,	d) High reluctance path	
I		

	Answer: a. Low reluctance path	
	Explanation: The purpose of a transformer core is to provide a low-reluctance path for the magnetic flux linking primary and secondary windings. In doing so, the core experiences iron losses due to hysteresis and eddy currents flowing within it which, in turn, show themselves as heating of the core material.	
8	Transformers are generally designed for a) one-time use b) off-site problem solving c) short-time use d) on-site problem solving Answer: d. on-site problem solving Explanation: Every transformer is designed for use it for multiple years, thus transformers are designed to handle the problems on site itself because it not only saves time but also makes repairing work easy.	1M
9	Primary winding of a transformer a) Could either be a low voltage or high voltage winding b) Is always a high voltage winding c) Cannot be determined d) Is always a low voltage winding Answer: a. Could either be a low voltage or high voltage winding Explanation: Primary winding used in a transformer, can be at higher or lower voltage potential, depending on the number of turns with secondary winding. For step up and step-down transformers primary winding will be at lower and higher potential respectively.	1M

	An ideal transformer will have maximum efficiency at a load	
	such that	
	a) copper loss > iron loss	
	b) cannot be determined	
	c) copper loss = iron loss	
	d) copper loss < iron loss	
10		434
		1M
	Answer: c. copper loss = iron loss	
	Explanation: Maximum efficiency of a transformer is defined at	
	that value when copper losses become completely equal to the	
	iron losses. In all other cases the efficiency will be lower than	
	the maximum value.	
	Power transformers are designed to have maximum efficiency	
	at	
	a) Full load	
	b) 50% load	
	c) 80% load	
	d) No load	1M
11	Answer: - a) Full load	
	Explanation: Power transformers are operated on full load	
	hence power transformers are designed to have maximum	
	efficiency at full load.	
	Transformer core are laminated in order to	
	a) Reduce hysteresis loss	
	b) Reduce hysteresis & eddy current loss	
	c) Minimize eddy current loss	
	d) Copper loss	
12	Answer: - a) Reduce hysteresis loss	1M
	Explanation:The iron core of a transformer is laminated to	
	reduce eddy currents. Eddy currents are the small currents that	
	result from the changing magnetic field	
	Breather is provided in a transformer to	
	a) Absorb moisture of air during breathing	1M
·	1	1

13	b) Provide cold air in the transformer	
	c) The filter of transformer oil	
	d) None of above	
	Answer: - a) Absorb moisture of air during breathing	
	Explanation: The breather is used in the transformer to filter out	
	the moisture from the air.	
	The leakage flux in a transformer depends upon the value of	
	a) Frequency	
	b) Mutual Flux	
	c) Load current	
14	d) Applied Voltage	1M
	Answer: -c) Load current	
	Explanation: The leakage flux depends on load current,	
	independent of voltage, frequency, and power factor.	
	In a transformer ideally the resistance between its primary and	
	secondary is	
	a) Zero	
	b) Infinite	
	c) 1000 ohm	
	d) 100 ohm	
4 =	Answer: - b) Infinite	1M
15	Explanation: An ideal transformer should have infinite	
	resistance between the primary and secondary winding.	
	However, the resistance may be in order of Gega ohms or Tera	
	Ohms depending on the insulation between the primary and	
	secondary winding.	
	Which winding in a transformer has more number of turns?	
	(A) Secondary winding	
	(B) Primary winding	435
16	(C) High voltage winding	1M
	(D) Low voltage winding	

	Answer: - C. High voltage winding	
	Explanation: High voltage winding always has a large number of	
	turns, as voltage is directly proportional to the number of turns.	
	An autotransformer can be used as	
	(A) Step up device	
	(B) Step down device	
	(C) Both step up and step down	
	(D) None of the above	
	Answer: - C Both step up and step down	
17	Explanation: An autotransformer can be both a step-up and	1M
17	step-down transformer. It is a type of transformer that has a	
	single winding that is shared by both the primary and secondary	
	circuits. This means that the autotransformer can be used to	
	either increase or decrease the voltage, depending on how the	
	windings are connected.	
	In an Auto Transformer, The Primary and Secondary are	
	Coupled	
	(A) Electrically only	
	(B) Magnetically only	
	(C) Both electrically & magnetically	
	(D) None of the above	
18	Answer: -C Both electrically & magnetically	1M
10		
	Explanation: An auto transformer is a one winding (or) single	
	circuit transformer, in which a portion of the winding is	
	common for both high voltage and low voltage winding. And this	
	entire winding will be placed on a single magnetic core	
	Which of the following are applications of Auto-transformer?	
	(A) Used as switch	
	(B) Used as Variac	
19	(C) Used for voltage correction	1M
	(D) All of the above	
	Answer: - D. All of the above	

	Explanation: Autotransformer is used as switch, it is used for	
	voltage correction.	
	Which of the following is the major disadvantage of	
	Autotransformer?	
	(A) No primary and secondary wire isolation	
	(B) Insulation failure of primary winding may damage the whole	
	autotransformer	
	(C) Individual earthing of winding is not possible	
	(D) All of the above	1M
20	Answer: - D All of the above	1 IVI
20	Explanation: The main disadvantage of the autotransformer is	
ı	that it does not have electrical isolation between primary and	
1	secondary windings. If primary winding may damage the whole	
	autotransformer may fail.) Individual earthing of winding is not	
	possible	
	The size of the transformer core mainly depends on	
	(A) Frequency	
	(B) Area of core	
	(C) Flux density of core	
	(D) Both frequency and area of core	
	Answer: - D. Both frequency and area of core	
		1M
21	Explanation:For a given transformer rating, as the frequency	
	increases the product of window area and cross sectional area	
	of the limb decreases; which means the iron required for the	
	core decreases. Therefore as the frequency increases, the	
	transformer becomes lighter and smaller in size.	
	Auto-transformer makes effective saving on copper and copper	
	losses, when its transformation ratio is	
	a) Approximately equal to one	
23	b) Less than one	
	c) Great than one	1M
43	d) Cannot be found	

	Answer: a. Approximately equal to one	
	Explanation: Copper In auto transformer /copper in two-	
	winding transformer = 1- T2/T1. This means that an auto	
	transformer requires the use of lesser quantity of copper given	
	by the ratio of turns. Hence, if the transformation ratio is	
	approximately equal to one, then the copper saving is good and	
	the copper loss is less.	
	Auto-transformer makes effective saving on copper and copper	
	losses, when its transformation ratio is	
	a) Approximately equal to one	
	b) Less than one	
	c) Great than one	
	d) Cannot be found	
	Answer: a. Approximately equal to one	1M
24	Explanation: Copper In auto transformer /copper in two-	
	winding transformer = 1- T2/T1. This means that an auto	
	transformer requires the use of lesser quantity of copper given	
	by the ratio of turns. Hence, if the transformation ratio is	
	approximately equal to one, then the copper saving is good and	
	the copper loss is less.	
	Total windings present in a autotransformer are	
	a) 1	
	b) 2	
	c) 3	
	d) 4	
		1M
25	Answer: a. 1	
	Explanation: Autotransformer is the special transformer for	
	which the single winding acts as a primary and secondary both.	
	Thus, by taking the appropriate winding into consideration a	
	indo, by diving the appropriate whiting into consideration a	

	variable secondary voltage is obtained.	
	What are the modes in which power can be transferred in an	
	autotransformer?	
	a) Conduction	
	b) Induction	
	c) Conduction and Induction	
	d) Cannot be said	
	Answer: c. Conduction and Induction	1M
	Explanation: In two winding transformer there is no electrical	11/1
26	connection between primary and secondary. So, the power is	
	transferred through induction. But in auto-transformer there is	
	a common electrical path between primary and secondary. So,	
	power is transferred through both conduction and induction	
	processes.	
	processes.	
	What will happen if DC shunt motor is connected across AC	
	supply?	
	a) Will run at normal speed	
	b) Will not run	
	c) Will Run at lower speed	
	d) Burn due to heat produced in the field winding	
	Answer: d Burn due to heat produced in the field winding	1M
27		
	Explanation: In case of parallel field connection, it won't rotate	
	at all and will start humming and will create vibrations, as a	
	torque produced by positive and negative cycle will cancel out	
	each other. DC motor will be heated up and it may burn.	
	What will happen if the back emf of a DC motor vanishes	
	suddenly?	
	a) The motor will stop	1M
	,	

	b) The motor will continue to run	
	c) The armature may burn	
28	d) The motor will run noisy	
20		
	Answer: c. The armature may burn	
	Explanation: If back emf vanishes suddenly, motor circuit will	
	try to retain back emf by drawing more current from supply. If	
	supplying unit didn't trip down by this time, excess current in	
	armature may heat up the armature.	
	What will happen, with the increase in speed of a DC motor?	
	a) Back emf increase but line current falls.	
	b) Back emf falls and line current increase.	
	c) Both back emf as well as line current increase.	
	d) Both back emf as well as line current fall.	
	Answer: a. Back emf increase but line current falls.	1M
	Explanation: In case of DC motor, the speed is proportional to	
29	the back emf (Ea \propto N). So, with the increase in speed, the back	
	emf also increases. Therefore, armature current is also	
	decreased, in case of series motor, armature current is equal to	
	the line or load current.	
	Which part will surely tell that given motor is DC motor and not	
	an AC type?	
	a) Winding	
	b) Shaft	
	c) Commutator	
	d) Stator	1M
30	Answer: c. Commutator	
	Explanation: All other parts except brushes and commutator	
L	1	

	are same in AC machine when outer looks are only taken in	
	consideration. Commutator is used only in DC machine for	
	providing mechanical rectification and not in AC machine.	
	Direction of rotation of motor is determined by	
	a) Faraday's law	
	b) Lenz's law	
	c) Coulomb's law	
	d) Fleming's left-hand rule	
	Answer: d. Fleming's left-hand rule	1M
31	Explanation: Flemings laws can be summarized as whenever, a	
31	current carrying conductor comes under a magnetic field, there	
	will be a force acting on the conductor and on the other hand, if	
	a conductor is forcefully brought under a magnetic field, there	
	will be an induced current in that conductor.	
	The current drawn by the armature of DC motor is directly	
	proportional to	
	a) Torque	
	b) Speed	
	c) The voltage across the terminals	
	d) Cannot be determined	
32	Answer: a. Torque	1M
	Explanation: From the equation of torque generated in a DC	
	machine, we know that in both DC motor and DC generator,	
	current drawn is directly proportional to the torque required by	
	the machine.	
	Which power is mentioned on a name plate of a motor?	
	a) Gross power	1M
	b) Power drawn in kVA	_

	c) Power drawn in kW	
33	d) Output power available at the shaft	
	Answer: d. Output power available at the shaft	
	Explanation: Name plate of the motor shows rated values i.e.	
	rated speed, rated current, rated voltage. It also shows output	
	power available at shaft when all other quantities are set to	
	rated values.	
	Which of the following quantity will decrease if supply voltage	
	is increased?	
	a) Starting torque	
	b) Operating speed	
	c) Full-load current	
	d) Cannot be determined	
	Answer: c. Full-load current	1M
34	Explanation: When supply voltage is increased full load current	
	will decrease in order to keep output power constant, which will	
	decrease torque at that moment, while starting torque will	
	remain as it is, irrespective of any change in supply voltage.	
	The main parts of d.c. motor	
	(a) Yoke	
	(b) Armature core	
	(c) Commentator	
	(d) Brush	1M
35	(e) All of the above	
33	Answer: - (e) All of the above	
	Explanation: The main components are: a stator, a rotor, a yoke,	
	poles, armature windings, field windings, commutator, and	

	brushes.	
	Application of Universal Motor	
	(a) Robotics	
	(b) Textile industries	
	(c) Mixer	
	(d) Automotive	
	Answer :- (c) Mixer	
36	Explanation: The Universal motor is used for purposes where	
	speed control and high values of speed are necessary. The	
	various applications of the Universal Motor are as follows:	
	Portable drill machines.	
	Used in hairdryers, grinders, and table fans.	
	A universal motor is also used in blowers, polishers, and kitchen	
	appliances.	
	Where is field winding mounted in a DC machine?	
	a) Stator	
	b) Rotor	
	c) Absent	
	d) Anywhere on stator or rotor	
	Answer: a. Stator	1M
37	Explanation: The field winding (concentrated type) is mounted	
	on salient-poles on the stator and the armature winding	
	(distributed type) is wound in slots on a cylindrical rotor.	
	What are the materials used for brushes in dc machines?	
	a) Iron	
	b) Carbon	4 8/
	c) Aluminum	1M
	d) Steel	

38		
	Answer: b. Carbon	
	Explanation: On some extent carbon brush can act as a self-	
	lubricating brush. On moment, polishes the commutator	
	segments. Damage to the commutators is less when copper	
	brushes are used on occurrence of sparkover.	
	Function of yoke is to provide the return path for magnetic flux.	
	a) True	
	b) false	
	Answer: a) True	
39	Explanation: The function of yoke is that it protects the entire	1M
	machine from dust and dirt. It also provides mechanical support	
	for the magnetic poles. It acts as the return path for the	
	magnetic flux.	
	Which of the following part is used in construction of DC	
	machine but not in AC machine?	
	a) Armature Winding	
	b) Field winding	
	c) Commutator	
	d) Shaft	
40		1M
10	Answer: c. Commutator	
	Explanation: Commutator is used in mechanical rectification	
	process, to convert induced AC to output DC. In AC machine, we	
	don't need rectification process.	
	In normal dc machines operating at full-load conditions, the	
	most powerful electromagnet is	
	a) Field winding	
	b) Interpole Winding	1M
	c) Interpole and compensating winding together	
	d) Armature winding	

41		
	Answer: a) Field winding	
	Explanation: Electromagnet is more powerful when its MMF is	
	high. At full-load condition, field winding contains maximum	
	ampere turns, hence it is most powerful electromagnet in a DC	
	machine.	
	Which of the following d.c. motor has highest speed at no-load condition?	
	A. Cumulative compound motor	
	B. Shunt motor	
	C. Differentially compound motor	
	D. series motor	1M
	Answer: D. series motor	
42	Explanation: At no load, armature current tends to zero, flux φ	
	tends to zero, where speed is inversely proportional to the flux,	
	and speed will tend to infinity. Thus, no load speed of DC series	
	motor is highest.	
	Following diagram represents the equivalent circuit of	
	Va Ra Rf Vf armature field	1M
4.0	winding winding	
43	A. Long shunt compound wound motor	
	B. Short shunt compound wound motor	
	C. Separately excited d.c. motor	

	D. Shunt wound d.c. motor	
	Answer: C. Separately excited d.c. motor	
	Explanation: A separate power supply is provided to field in	
	separately excited d.c. motor.	
	Differentially account of DC materials and discounting the second of the	
	Differentially compound DC motors are used in applications	
	requiring	
	a) High starting torque	
	b) Low starting torque	
	c) Variable speed	
	d) Frequent on-off cycles	
44	Answer: b. Low starting torque	1M
	Explanation: Compound motor shows combine effect of shunt	
	and series field windings. Differential compound series motor	
	gives low starting torque, examined by torque current	
	characteristic. Hence, applications with low starting torque are	
	called in differentially compound DC motor.	
	A universal motor is one which	
	A. Is available universally	
	B. Can be marketed internationally	
	C. Can be operated either on dc or ac supply	
	D. Runs at dangerously high speed on no-load	
45	Answer: C. Can be operated either on dc or ac supply	1M
	Explanation: Universal Motor is a special type of motor that can	
	run on a DC supply or a single-phase AC supply. Since it can run	
	both on AC and DC, it is called a universal motor.	
	Speed of the universal motor is	
	A. Dependent on frequency of supply	
	B. Proportional to frequency of supply	1M
46	C. Independent of frequency of supply	
	D. None of the above	

	Answer: C. Independent on frequency of supply	
	Explanation: Brushed universal motors are largely independent	
	of AC frequency,	
	Which of the following motor can be referred as a universal	
	motor?	
	a) DC shunt motor	
	b) DC compound motor	
	c) Permanent magnet motor	
	d) DC series motor	
		1M
47	Answer: d DC series motor	
	Explanation: DC series motor can operate on DC and AC. It is a	
	universal motor. Universal motors are those motors that can	
	operate on both DC and AC. DC shunt motor can only operate on	
	DC because of pulsating torque in AC.	
	Universal motor have which of the following application?	
	A. Domestic pump.	
	B. Food mixer.	
	C. Traction.	
	D. Lift.	
	Answer: B. Food mixer.	
	Explanation: Out of the given options, a food mixer is a common	
	application for a universal motor. Food mixers typically require	1M
48	a motor that can operate on both AC and DC power, allowing for	
10	versatile use in different settings. The universal motor's ability	
	to operate on both AC and DC power makes it suitable for	
	powering food mixers, where the user may switch between AC	
	and DC power sources.	
	While domestic pumps, traction systems, and lifts can use	
	electric motors, they often require specific types of motors that	
L	1	I

nous motors, or specialized DC motors. or is used in vacuum cleaners, table fans and g machine.	
·	
g machine.	
	45-
	1M
e universal motor is dc series motor with ac	
ller torque. So it can be used for lower torque	
tepper motor has no	
ntioned	
	1M
the mentioned	
tepper motor has a cylindrical permanent	
nus it does not contain windings, commutator or	
ed on it.	
or is a device.	
	1M
emental	
stepping motor is a motor in which the motion is	
eps and is an incremental device in which as the	
he steps are increased.	
speed of a given stepper motor is determined	
	1M
	e universal motor is dc series motor with ac aller torque. So it can be used for lower torque stepper motor has no

	a) Shaft load	
	b) Step pulse frequency	
52	c) Polarity of stator current	
32	d) Magnitude of stator current.	
	Answer: b. Step pulse frequency	
	Explanation: The stator part of a motor is the stationary part of	
	the motor and rotational speed of a given stepper motor is given	
	by the step pulse frequency.	
	A stepper motor may be considered as a converter.	
	a) Dc to dc	
	b) Ac to ac	
	c) Dc to ac	
	d) Digital-to-analogue	
		1M
53	Answer: d. Digital-to-analogue	
33	Explanation: A stepper motor is a motor in which the motion is	
	in steps and it is an increemental device and may be considered	
	as a digital to analog converter.	
	Which type of motor uses brushes and a commutator?	
	a) DC motor	
	b) AC motor	
	c) Induction motor	
	d) Synchronous motor	1M
	Answer: a) DC motor	
54	E-mlowation, DC materia was howeless and a service to the	
	Explanation: DC motors use brushes and a commutator to	
	achieve the conversion of electrical energy into mechanical	
	energy.	
	Which type of motor does not require a separate power source	
	for the rotor?	1M

	a) Synchronous motor	
	b) Induction motor	
	c) Brushless DC motor	
55	d) Universal motor	
	Answer: b) Induction motor	
	Explanation: In an <u>induction motor</u> , the rotor is powered by	
	electromagnetic induction from the stator, eliminating the need	
	for a separate power source.	
	What is the primary function of the stator in an electric motor?	
	a) To provide mechanical support	
	b) To generate a rotating magnetic field	
	c) To convert electrical energy into mechanical energy	
	d) To regulate the motor's speed	1 M
	Answer: b) To generate a rotating magnetic field	1M
56	Explanation: The stator carries the windings that create a	
	rotating magnetic field, which interacts with the rotor to	
	produce motion in an electric motor.	
	Which type of motor is commonly used in household appliances	
	like refrigerators and air conditioners?	
	a) Single-phase induction motor	
	b) Synchronous motor	
	c) Brushless DC motor	
	d) Universal motor	1M
	,	2.72
57	Answer: a) Single-phase induction motor	
	Explanation: Single-phase induction motors are widely used in	
	household appliances due to their simplicity, low cost, and	
	reliable performance.	
		1

	What determines the speed of a DC motor?	
	What actormines the speed of a Be motor.	
	a) Number of poles	
	b) Applied voltage	
	c) Armature resistance	
F0	d) Back EMF	134
58	Answer: d) Back EMF	1M
	Explanation: The speed of a DC motor is determined by the back	
	electromotive force (EMF) generated in the armature coil, which	
	opposes the applied voltage.	
	Which type of motor provides the highest starting torque?	
	a) DC series motor	
	b) DC shunt motor	
	c) AC induction motor	
	d) Brushless DC motor	1M
59	Answer: a) DC series motor	
	Explanation: DC series motors provide high starting torque due	
	to their characteristic of high armature current and strong field	
	interaction.	
	Which motor is suitable for applications requiring variable	
	speed control?	
	a) DC motor	
	b) AC motor	
	c) Stepper motor	1M
	d) Synchronous motor	11/1
60	Answer: a) DC motor	
	Explanation: DC motors are suitable for <u>variable speed</u>	
i - 1	control applications as their speed can be easily adjusted by	

1M
1M
1M
1M
1M
1M
1M
_

	phase power supply.	
	Which motor type is suitable for high-speed applications?	
	a) Brushless DC motor	
	b) DC series motor	
	c) Induction motor	
	d) Universal motor	1M
64	Answer: a) Brushless DC motor	I IVI
	Explanation: Brushless DC motors are suitable for high-speed	
	applications due to their ability to operate at high rotational	
	speeds and provide precise <u>speed control</u> .	
	Which motor type is commonly used in household washing machines?	
	a) Universal motor	
	b) Induction motor	
	c) Brushless DC motor	
	d) Stepper motor	1M
65	Answer: b) Induction motor	
	Explanation: Household washing machines typically use	
	induction motors due to their reliability, low cost, and ability to	
	handle variable loads.	
	Which motor type is commonly used in robotic vacuum	
	cleaners?	
	a) Brushless DC motor	
	b) DC series motor	1M
	c) Induction motor d) Stepper motor	
66	a) stepper motor	
	Answer: d) Stepper motor	

for precise control of movement and positioning. What is the primary disadvantage of a universal motor? a) Limited speed range b) Lower efficiency c) Larger size d) Complex control circuitry Answer: b) Lower efficiency Explanation: Universal motors have lower efficiency compared to other motor types due to the energy losses associated with their universal commutator. Which motor type is commonly used in electric fans? a) Synchronous motor b) DC shunt motor c) Induction motor d) Universal motor Answer: a) Synchronous motor Explanation: Electric fans often use synchronous motors due to their ability to operate at a constant speed and maintain synchronization with the power supply frequency. Which motor type is commonly used in CNC machines and 3D printers? a) Stepper motor b) DC shunt motor c) Synchronous motor	
a) Limited speed range b) Lower efficiency c) Larger size d) Complex control circuitry Answer: b) Lower efficiency Explanation: Universal motors have lower efficiency compared to other motor types due to the energy losses associated with their universal commutator. Which motor type is commonly used in electric fans? a) Synchronous motor b) DC shunt motor c) Induction motor d) Universal motor Answer: a) Synchronous motor Explanation: Electric fans often use synchronous motors due to their ability to operate at a constant speed and maintain synchronization with the power supply frequency. Which motor type is commonly used in CNC machines and 3D printers? a) Stepper motor b) DC shunt motor c) Synchronous motor	
b) Lower efficiency c) Larger size d) Complex control circuitry Answer: b) Lower efficiency Explanation: Universal motors have lower efficiency compared to other motor types due to the energy losses associated with their universal commutator. Which motor type is commonly used in electric fans? a) Synchronous motor b) DC shunt motor c) Induction motor d) Universal motor Answer: a) Synchronous motor Explanation: Electric fans often use synchronous motors due to their ability to operate at a constant speed and maintain synchronization with the power supply frequency. Which motor type is commonly used in CNC machines and 3D printers? a) Stepper motor b) DC shunt motor c) Synchronous motor	
c) Larger size d) Complex control circuitry Answer: b) Lower efficiency Explanation: Universal motors have lower efficiency compared to other motor types due to the energy losses associated with their universal commutator. Which motor type is commonly used in electric fans? a) Synchronous motor b) DC shunt motor c) Induction motor d) Universal motor Answer: a) Synchronous motor Explanation: Electric fans often use synchronous motors due to their ability to operate at a constant speed and maintain synchronization with the power supply frequency. Which motor type is commonly used in CNC machines and 3D printers? a) Stepper motor b) DC shunt motor c) Synchronous motor	
d) Complex control circuitry Answer: b) Lower efficiency Explanation: Universal motors have lower efficiency compared to other motor types due to the energy losses associated with their universal commutator. Which motor type is commonly used in electric fans? a) Synchronous motor b) DC shunt motor c) Induction motor d) Universal motor Answer: a) Synchronous motor Explanation: Electric fans often use synchronous motors due to their ability to operate at a constant speed and maintain synchronization with the power supply frequency. Which motor type is commonly used in CNC machines and 3D printers? a) Stepper motor b) DC shunt motor c) Synchronous motor	
Answer: b) Lower efficiency Explanation: Universal motors have lower efficiency compared to other motor types due to the energy losses associated with their universal commutator. Which motor type is commonly used in electric fans? a) Synchronous motor b) DC shunt motor c) Induction motor d) Universal motor Answer: a) Synchronous motor Explanation: Electric fans often use synchronous motors due to their ability to operate at a constant speed and maintain synchronization with the power supply frequency. Which motor type is commonly used in CNC machines and 3D printers? a) Stepper motor b) DC shunt motor c) Synchronous motor	
Explanation: Universal motors have lower efficiency compared to other motor types due to the energy losses associated with their universal commutator. Which motor type is commonly used in electric fans? a) Synchronous motor b) DC shunt motor c) Induction motor d) Universal motor Answer: a) Synchronous motor Explanation: Electric fans often use synchronous motors due to their ability to operate at a constant speed and maintain synchronization with the power supply frequency. Which motor type is commonly used in CNC machines and 3D printers? a) Stepper motor b) DC shunt motor c) Synchronous motor	1M
to other motor types due to the energy losses associated with their universal commutator. Which motor type is commonly used in electric fans? a) Synchronous motor b) DC shunt motor c) Induction motor d) Universal motor Answer: a) Synchronous motor Explanation: Electric fans often use synchronous motors due to their ability to operate at a constant speed and maintain synchronization with the power supply frequency. Which motor type is commonly used in CNC machines and 3D printers? a) Stepper motor b) DC shunt motor c) Synchronous motor	
their universal commutator. Which motor type is commonly used in electric fans? a) Synchronous motor b) DC shunt motor c) Induction motor d) Universal motor Answer: a) Synchronous motor Explanation: Electric fans often use synchronous motors due to their ability to operate at a constant speed and maintain synchronization with the power supply frequency. Which motor type is commonly used in CNC machines and 3D printers? a) Stepper motor b) DC shunt motor c) Synchronous motor	
Which motor type is commonly used in electric fans? a) Synchronous motor b) DC shunt motor c) Induction motor d) Universal motor Answer: a) Synchronous motor Explanation: Electric fans often use synchronous motors due to their ability to operate at a constant speed and maintain synchronization with the power supply frequency. Which motor type is commonly used in CNC machines and 3D printers? a) Stepper motor b) DC shunt motor c) Synchronous motor	
a) Synchronous motor b) DC shunt motor c) Induction motor d) Universal motor Answer: a) Synchronous motor Explanation: Electric fans often use synchronous motors due to their ability to operate at a constant speed and maintain synchronization with the power supply frequency. Which motor type is commonly used in CNC machines and 3D printers? a) Stepper motor b) DC shunt motor c) Synchronous motor	
b) DC shunt motor c) Induction motor d) Universal motor Answer: a) Synchronous motor Explanation: Electric fans often use synchronous motors due to their ability to operate at a constant speed and maintain synchronization with the power supply frequency. Which motor type is commonly used in CNC machines and 3D printers? a) Stepper motor b) DC shunt motor c) Synchronous motor	
c) Induction motor d) Universal motor Answer: a) Synchronous motor Explanation: Electric fans often use synchronous motors due to their ability to operate at a constant speed and maintain synchronization with the power supply frequency. Which motor type is commonly used in CNC machines and 3D printers? a) Stepper motor b) DC shunt motor c) Synchronous motor	
d) Universal motor Answer: a) Synchronous motor Explanation: Electric fans often use synchronous motors due to their ability to operate at a constant speed and maintain synchronization with the power supply frequency. Which motor type is commonly used in CNC machines and 3D printers? a) Stepper motor b) DC shunt motor c) Synchronous motor	
Answer: a) Synchronous motor Explanation: Electric fans often use synchronous motors due to their ability to operate at a constant speed and maintain synchronization with the power supply frequency. Which motor type is commonly used in CNC machines and 3D printers? a) Stepper motor b) DC shunt motor c) Synchronous motor	
Explanation: Electric fans often use synchronous motors due to their ability to operate at a constant speed and maintain synchronization with the power supply frequency. Which motor type is commonly used in CNC machines and 3D printers? a) Stepper motor b) DC shunt motor c) Synchronous motor	1M
Explanation: Electric fans often use synchronous motors due to their ability to operate at a constant speed and maintain synchronization with the power supply frequency. Which motor type is commonly used in CNC machines and 3D printers? a) Stepper motor b) DC shunt motor c) Synchronous motor	
synchronization with the power supply frequency. Which motor type is commonly used in CNC machines and 3D printers? a) Stepper motor b) DC shunt motor c) Synchronous motor	
Which motor type is commonly used in CNC machines and 3D printers? a) Stepper motor b) DC shunt motor c) Synchronous motor	
printers? a) Stepper motor b) DC shunt motor c) Synchronous motor	
a) Stepper motor b) DC shunt motor c) Synchronous motor	
b) DC shunt motor c) Synchronous motor	
c) Synchronous motor	
	1M
l an I	1141
d) Brushless DC motor	
Answer: a) Stepper motor	

	Explanation: CNC machines and 3D printers often use stepper	
	motors due to their precise positioning capabilities and ease of	
	control.	
	What is the primary disadvantage of a stepper motor?	
	a) Limited speed range	
	b) Higher cost	
	c) Larger size	
	d) Complex control circuitry	434
70		1M
	Answer: a) Limited speed range	
	Explanation: Stepper motors have a limited speed range	
	compared to other motor types, which can be a disadvantage in	
	certain high-speed applications.	
	Which motor type is commonly used in electric bicycles?	
	a) Brushless DC motor	
	b) DC series motor	
	c) Induction motor	
	d) Universal motor	434
		1M
71	Answer: a) Brushless DC motor	
/1	Explanation: Electric bicycles often use brushless DC motors	
	due to their high efficiency, compact size, and ability to provide	
	assistance at various speeds.	
	Which motor type is commonly used in electric drills and power	
	tools?	
	a) Universal motor	
	b) Synchronous motor	1M
	c) Induction motor	
72	d) Brushless DC motor	

	Answer: a) Universal motor	
	Explanation: Electric drills and power tools often use universal	
	motors due to their high power-to-weight ratio and ability to	
	operate on both AC and DC power sources	
	Which motor type is commonly used in electric cars?	
	which motor type is commonly used in electric cars:	
	a) Brushless DC motor	
	b) Synchronous motor	
	c) Induction motor	
	d) Universal motor	437
		1M
	Answer: a) Brushless DC motor	
73	Explanation: Electric cars often use brushless <u>DC motors</u> due to	
/3	their high efficiency, compact size, and ability to provide high	
	torque at various speeds.	
	Which motor tyme is sommonly used in dishyroshous and	
	Which motor type is commonly used in dishwashers and	
	washing machines?	
	a) Universal motor	
	b) Synchronous motor	
	c) Induction motor	
	d) Brushless DC motor	1M
74	Answer: c) Induction motor	
	Explanation: Dishwashers and washing machines commonly	
	use induction motors for their reliability, low maintenance, and	
	ability to handle variable loads.	
	Differentially compound DC motors are used in applications	
	requiring	
	a) High starting torque	
	b) Low starting torque	1M
	c) Variable speed	
	d) Frequent on-off cycles	

75		
	Answer: b. Low starting torque	
	Explanation: Compound motor shows combine effect of shunt	
	and series field windings. Differential compound series motor	
	gives low starting torque, examined by torque current	
	characteristic. Hence, applications with low starting torque are	
	called in differentially compound DC motor.	
	Which DC motor is more preferred for elevators?	
	a) Shunt motor	
	b) Series motor	
	c) Differential compound motor	
	d) Cumulative compound motor	
	Answer: d. Cumulative compound motor	
76	Explanation: Cumulative wound DC motors give high starting	1M
	torque like a series motor and reasonable good speed	
	regulation at high speeds like a shunt dc motor. As this type of	
	motor offers the best of both series and shunt motor, it is	
	practically suitable for most common applications like	
	elevators.	
	Which DC motor has got maximum self-loading property?	
	a) Series motor	
77	b) Shunt motor	
	c) Cumulative compound motor	
	d) Differential compound motor	
	Answer: d. Differential compound motor	1M
	Explanation: A differentially compound DC motor, flux reduces	
	so sharply at small increase in load at higher values of load. It is	
	advisable that motor should not be used beyond some load	

	value, as it may damage itself by self-loading.	
	For the same H.P. rating and full load speed, which of the	
	following motor has poor starting torque?	
	a) Series motor	
	b) Shunt motor	
	c) Cumulative compound motor	
	d) Differential compound motor	
	d) Differential compound motor	
78	Answer: d. Differential compound motor	1M
	Explanation: In differential compound motor, series field	
	opposes shunt field. It has poor starting torque as the resultant	
	flux is minimized by this opposition. The flux starts decreasing	
	with increase in load. The decrease in flux cause the starting	
	torque to be less than any other DC motor.	
	DC motor is to a drive a load which is almost zero for certain	
	part of the load cycle and peak value for short duration. We will	
	select	
	a) Series motor	
	b) Shunt motor	
	c) Compound motor	
70	d) Any DC motors	
79		1M
	Answer: c. Compound motor	
	Explanation: We can't use series motor as our load is almost	
	zero at some points. Thus, we'll use compound motor which can	
	work on no load also. Cumulative compound motor is provided	
	with flywheel so that this machine can deal with peak value.	
	The direction of rotation of universal motor can be reversed the	
	by reversing the flow of current through	4 8/
	a) Armature winding	1M
		<u> </u>

	T	1
	b) Field winding	
	c) Either armature winding or field winding	
80	d) None of the above	
	Answer: c. Either armature winding or field winding	
	Explanation: The direction of rotation of universal motor can be	
	reversed the by reversing the flow of current through Either	
	armature winding or field winding	
	Universal motor is used in vacuum cleaners, table fans and	
	portable drilling machine.	
	a) True	
	b) False	
	Answer: a. True	1M
81	Explanation: The universal motor is dc series motor with ac	
	supply with smaller torque. So it can be used for lower torque	
	applications.	
	Generator is used in arc welding purposes.	
	a) Differential compound dc	
	b) Dc series	
	c) Cumulative compounded dc	
	d) Shunt	
	Answer: a. Differential compound dc	1M
82	Explanation: The external characteristics of the differentially	
	compound generator have minimum voltage for the high	
	current voltages. This is best harnessed feature for a high	
	current requirement by the welding application.	
	Which value of the flux is involved in the EMF equation of	
83	transformer	1M
	a) Average value	TIVI

	b) R.M.S. Value	
	c) Critical value	
	d) Maximum value	
	Answer: Maximum value	
	Explanation: The instantaneous value of the flux is constantly	
	changing, and is not a useful value to consider for the e.m.f.	
	equation of a transformer. Therefore, the value of flux involved	
	in the e.m.f. equation of a transformer is the maximum value.	
	What criteria's are necessary to consider when selecting a	
	stepper motor?	
	a)Mechanical Motion.	
	b)Inertial Load	
	c)Speed Requirements	
84	d) All of the above	435
		1M
	Answer: d. All of the above	
	Explanation: The key performance specifications for sourcing a	
	stepper motor are voltage, speed, torque, rotor inertia and step	
	angle.	
	Which of the following motor rotates in discrete angular steps?	
	a) Servo motor	
	b) DC motor	
	c) Stepper motor	
	d) Linear Induction Motor (LIM)	
85	Answer: c. Stepper motor	
	Explanation: A stepper motor is a brushless DC electric motor	1M
	whose rotor rotates in discrete angular increments when its	
	stator winding energized in a programmed manner. They have	
	multiple coils that are organized in groups called phases. By	
	energizing each phase in sequence, the motor will rotate, one	
	step at a time.	
	stop at a timo:	
86	Which type of device is a stepper motor?	
	a) Electromechanical	1M
•		•

	b) Electrochemical	
	c) Embedded system	
	d) Electromagnetic	
	Answer: a. Electromechanical	
	Explanation: A stepper motor is an electromagnetic device	
	which converts the electrical pulses into discrete mechanical	
	movements. The shaft of the electrical motor.	
	Stepper motors are extremely reliable.	
	a) True	
	b) False	
87	Answer: a. True	1M
	Explanation: There are no contact brushes in the motor,	
	therefore, the Stepper motors are extremely reliable. The life of	
	the motor depends only upon the life of the bearings. Wide	
	ranges of rotational speed are possible.	
	Which among the following is not the type of a stepper motor?	
	a) Variable reluctance	
	b) Permanent magnet	
	c) Hybrid	
	d) Variable magnet	
88	Answer: d. Variable magnet	
	Explanation: Variable magnet is not the type of a stepper motor.	1M
	Variable reluctance stepper motor consists of a soft iron multi-	
	toothed rotor and a wound stator. Permanent magnet stepper	
	motors have a rotor made up of the permanent magnet. Hybrid	
	stepper motor provides better performance with respect to step	
	resolution, torque and speed.	
	A stepper motor is a bad choice whenever control movement is	
	required.	
89	a) True	1M
	b) False	
	-y- 3-00	

	Answer: b. False	
	Explanation: A stepper motor is a good choice whenever control	
	movement is required. They can be used in the applications	
	where there is a need to control rotation angle, speed, position	
	and synchronism. Due to all these reasons, stepper motors are	
	used in many different applications.	
	Which type of stepper motors have low cost and low-resolution	
	motor?	
	a) Permanent magnet stepper motor	
	b) Variable reluctance stepper motor	
	c) Hybrid stepper motor	
	d) DC motor	
90		
	Answer: a. Permanent magnet stepper motor	1M
	Explanation: The permanent magnet stepper motor has low	
	cost and low-resolution type motor with the step angle of 7.5%	
	to 15%. This type of stepper motor has a rotor made up of the	
	permanent magnet. The other motors mentioned in the option	
	do not have low cost as well as low redundancy.	
	Which of the following is not the main selection criterion of a	
	stepper motor?	
	a) Resolution required	
	b) Drive mechanism component required	
	c) Torque required	
	d) Speed	
91		
	Answer: d. Speed	1M
	Explanation: Speed is not the main selection criteria of a	
	stepper motor. The selection criteria of a stepper motor	
	include resolution required, drive mechanism component,	
	operating pattern required such as sequencing, accelerationetc.	
	and torque required	

	What is the formula to calculate the step angle of a stepper motor?	
	a) (360*ph.)/nph	
	b) (ph/nph)	
	c) (nph/ph)	
	d) (360*nph)/ph	
92	Answer: a. (360*ph.)/nph	1M
	Explanation: The step angle is given by (360*ph)/nph where	
	'nph' is the number of equivalent poles per phase or number of	
	rotor poles, 'ph' is the number of phases and 'n' is the total	
	number of poles in all phases.	
	In a DC series motor, if the armature current is halved, the	
	torque of the motor will be equal to	
	a) 100% of the previous value	
	b) 50% of the previous value	
	c) 25% of the previous value	
	d) 10% of the previous value	
93	Answer: c 25% of the previous value	1M
	Explanation: Torque in the case of linear magnetization of DC	
	series motor is directly proportional to square of the armature	
	current. So, armature current is made 1/2th of the original	
	value, then torque will be 1/4th of the original value.	
	The slot edges in a DC machine are made of	
	(A) mild steel	
94	(B) silicon steel	1M
	(C) fibre	1 1/1
	(D) cast iron	

	Answer: D cast iron	
	Explanation: The outer frame of a dc machine is called as yoke.	
	It is made up of cast iron or steel. It not only provides	
	mechanical strength to the whole assembly but also carries the	
	magnetic flux produced by the field winding.	
	In a shunt dc machine, the armature and field winding	
	resistance are respectively	
	(A) of higher values	
	(B) of lower values	
95	(C) high and low	1 M
	(D) low and high	1M
	Answer: D low and high	
	Explanation: In DC shunt machine the armature resistance is	
	low and field winding resistance is high.	
	The principle of dynamically induced emf is utilized in	
	(A) generator	
	(B) transformer	
96	(C) thermocouple	
70	(D) choke	1M
	Answer: A Generator	
	Explanation: An electric generator works on the principle	
	of electromagnetic induction.	
	In a transformer, the winding is tapped in the middle	
	(A) to avoid the radial forces on the windings	
	(B) to reduce the insulation level of the windings	
97	(C) to provide a mechanical balance to the windings	
<i>31</i>	(D) to eliminate the axial forces on the windings	1M
	Answer: D to eliminate the axial forces on the windings	
	Explanation: In a transformer, the winding is tapped in the	
	middle for voltage regulation and eliminate axial forces	
	What is the working principle of DC motor?	
98	a) Fleming's right hand rule	
70	b) Fleming's left hand rule	1M
	c) Maxwell's second law	

	d) Maxwell's third law	
	Answer: b. Fleming's left hand rule	
	Explanation: The working principle of motor Fleming's left	
	hand rule. It states that, when a current carrying conductor is	
	place in a magnetic field then it experiences a force. The	
	direction of force can be determined by Fleming's left hand rule.	
	What is the full form of CPR with respect to motor movement?	
	a) Clocks per rotation	
	b) Counts per revolution	
	c) Counts per rotation	
	d) Clocks per revolution	
99	Answer: b. Counts per revolution	
	Explanation: CPR stands for Counts per revolution with respect	1M
	to motor movement. 2 square pulses are generated at a time by	
	a typical motor encoder, CPR (Counts per revolution) is the is	
	the number of quadrature decode states that exists between	
	these two square pulses	
	AC motors do not have brushes.	
	a) True	
	b) False	
	Answer: a. True	
100	Explanation: AC motors do not have brushes. Due to the absence	
	of brush mechanism AC motors have longer life expectancy. DC	1M
	motors comes in two forms, Brushed and Brushless motors. DC	
	motors without brushes are termed as BLDC (Brushless DC)	
		1

Thank You

https://shikshamentor.com/basic-electrical-electronics-enggfor-msbte-k-scheme/

Visit

https://shikshamentor.com/

