

https://shikshamentor.com/basic-electricalelectronics-engg-for-msbte-k-scheme/

312302 - Basic Electrical & Electronics Engg (BEE-Sem II) As per MSBTE's K Scheme CO / CM / IF / AI / AN / CW / DS

Unit I	Basic Electrical Fundamentals Ma	n <mark>rks - 14</mark>
S. N.	MSBTE Board Asked Questions	Marks
1.	Permeability in a magnetic circuit corresponds toin an electric circuit A. Resistance B. Resistivity C. Conductivity D. Conductance Answer- C. Conductivity Explanation: For electric circuits we define conductance for magnetic circuits we define Permeability.	1M
2.	 Those magnetic materials are best suited for making armature and transformer cores which havepermeability andhysteresis loss A. High, high B. Low, high C. High, low D. Low, low Answer- C. High, low 	1M

	E Explanation: For making transform cores the permeability of	
	material should be high hysteresis loss should be low	
3.	The property of a material which opposes the creation of magnetic flux in it is known as A. Reluctivity B. Magnetomotive force C. Permeance D. Reluctance Answer- D. Reluctance Explanation: Reluctance is defined as the opposition of magnetic flux in magnetic circuit.	1M
4.	The unit of magnetic flux is A. Henry B. Weber C. Ampere-turn/weber D. Ampere/meter Answer- B. Weber Explanation: The total number of magnetic lines of force in a magnetic field is called as magnetic flux & its unit is Weber (wb)	1M
5.	The unit of reluctance is A. Meter/henry B. Henry/meter C. Henry D. 1/henry Answer-D. 1/henry Explanation: The unit of reluctance is ampere-turns per weber i.e 1/Henry.	1M

6.	Reciprocal of reluctance is A. Reluctivity B. Permeance C. Permiability D. Susceptibility Answer- B. Permeance Explanation: Permeance is reciprocal of reluctance is a measure of magnetic flux for a number of current turns in a magnetic circuit.	1M
7.	Conductivity is analogous to A. Retentivity B. Resistivity C. Permeability D. Inductance Answer- C. Permeability Explanation:Conductivity of a metallic wire is defined as its ability to allow electric charges or heat to pass through it. It is analogous to permeability. Permeability is the measure of magnetization produced in a material in response to an applied magnetic field.	1M

	Inside the magnet, the field lines moves	
	A. From north to south	
	B. from south the north	
	C. away from south pole	
10.	D. away from north pole	1M
	Answer: - A. From north to south	
	Explanation: According to properties of Magnetic field inside	
	the magnet moves from south to north pole.	
	Direction of rotation of a coil in electric motor is determined	
	by	
	A. fleming's right hand rule	
	B. fleming's left hand rule	
	C. faraday law of electromagnetic inductors	
	D. None of above	
	Answer: - B. Fleming's left hand rule	
11.		434
		IM
	Explanation: The Fleming'sleft-hand rule is used to help	
	remember the direction of the magnetic field, the direction of	
	the current, and the direction of magnetic thrust force when a	
	conducting rod is introduced to a magnetic field. It is	
	commonly used to determine the direction of motion of an	
	electric motor.	
	We can induce the current in a coil by	
	A. moving the coil in a magnetic field	
	B. by changing the magnetic field around it	
	C. by changing the orientation of the coil in the magnetic field	
12	D. All of above	
12.		1M
	Answer: A. moving the coil in a magnetic field	
	Evaluation. The method can be used to induce the networks!	
	Explanation: The method can be used to induce the potential	
	amerence across the ends of a coll and hence to induce the	

	Explanation: According to Faraday's law of electromagnetic induction, an emf is induced in a conductor when it cuts across the flux of a magnetic field. If the two ends of the conductor are connected to an outside circuit, the induced emf causes current to flow in the circuit.	
	What is proportional to the magnitude of the induced emf in the circuit?	
	A Pate of change of current in the circuit	
	R. Rate of change of resistance offered	
	C. Pate of change of magnetic flux	
	D. Pate of change of voltage	
	Answer: C. Pate of change of magnetic flux	
15.	Answer. C. Rate of change of magnetic nux	
	Explanation: The magnitude of induced emf is equal is equal	1M
	to the time rate of change of magnetic flux. It is	
	mathematically expressed as:	
	$\epsilon = -d\phi dt$	
	The negative sign indicates the direction of the emfinduced	
	This is Faraday's second law of electromagnetic induction	
	This is raraday s second law of electromagnetic induction.	
	Faraday's laws are result of the conservation of which quantity?	
	A Momontum	
	A. Momentum B. Enorgy	
	C Charge	
16	D. Magnetic field	
10.	Answer: R Energy	1M
	Fundamentation: Faraday's laws are result of the conservation of	
	energy. These laws are based on the conversion of electrical	
	energy into mechanical energy. Mechanical energy can be	
	converted into electrical energy such as in the example of a	
	dynamo. In the same way, electrical energy can be converted	

	into mechanical energy such as in the example of electric	
	motor. Both of the above examples work on the principle of	
	Faraday's law.	
	The induced emf persists only as long as the change in	
	magnetic flux continues.	
	A. True	
	B. False	
	Answer: A. True	
17.	Explanation: According to Faraday's first law, whenever the	1 M
	amount of magnetic flux linked with a circuit changes, an emf	
	is induced in the circuit. This induced emf persists as long as	
	he change in magnetic flux continues. Therefore, this is a true	
	statement.	
	The polarity of induced emfis given by	
	A Ampere's circuital law	
	R Riot-Savart law	
	C. Lenz's law	
	D. Fleming's right hand rule	
18	Answer: C. Lenz's law	
10.	Explanation: Lenz's law is used to measure the polarity of	1M
	induced e.m.f. Ampere's law correlates with the magnetic	
	field induced in a coil. Biot-Savart law describes the magnetic	
	field generated by a constant electric current. Fleming's right-	
	hand rule gives the estimate that in which direction the	
	current will flow.	
	When an insulated wire coil is connected to a battery, the	
	pointer of the galvanometer is deflected due to	
19.	A. the induced current produced	
	B. the coil acts like a magnet	1M
	C. the number of turns in the coil of the galvanometer is changed	
	D. None of these	

	Answer: A. the induced current produced	
	Explanation: A galvanometer measures the amount of current	
	flowing through the circuit. In a current flowing conductor	
	connected to a battery, the pointer of the galvanometer	
	fluctuates and points to the amount of current flowing. Thus a	
	galvanometer measures the amount of induced current in the	
	circuit.	
	Give the SI unit of self-inductance.	
	A. Farad	
	B. Ampere	
	C. Henry	
	D. Maxwell	
20.	Answer: C. Henry	
	Explanation: The self-inductance of a coil is said to be one	1M
	henry if an induced emf of one volt is set up in it when the	
	current in it changes at the rate of one ampere per second.	
	Self-inductance is defined as the induction of a voltage in a	
	current-carrying wire when the current in the wire itself is	
	changing.	
	Mutual inductance is called the inertia of electricity.	
	A. True	
	B. False	
	Answer: B. False	
21.	Explanation: Self-induction of a coil is that the property by	1M
	which it tends to take care of the magnetic flux linked with it	
	and opposes any change within the flux by inducing a current	
	in it. This is the reason why self-induction is named inertia of	
	electricity.	
	What is the self-inductance of the coil, if the magnetic flux of	
	10 microwebers is linked with a coil when a current of 5 mA	
22.	flows through it?	1M
	A. 20 mH	
		1

	B. 5 mH	
	C. 2 mH	
	D. 250 mH	
	Answer: C	
	Explanation: Self-inductance = Magnetic flux x Current	
	Self-inductance = 10×10 ^-6 X 5×10^-3	
	Self-inductance = 2×10^{-3} H	
	Self-inductance = 2mH	
	What are the positive and negative terminals of direct current	
	(DC) known to have?	
	A. fixed polarity	
	B. no polarity	
	C. always negative polarity	
	D. variable polarity	
23.	Answer:A. Fixed polarity	1M
	Explanation: The direction and magnitude of the current, in a	
	Direct Current (DC), do not change. Simply, both positive and	
	negative terminals of a battery are always positive and	
	negative. Therefore, the current that flows always is in the	
	same direction between both terminals. Examples: Fuel cells,	
	Batteries, and Solar cells	
	The peak value of alternating supply is 600 V. What is its rms	
	voltage?	
	a. 410 V	
	b. 312.5 V	
24.	c. 424.3 V	
	d. 130 V	IM
	Answer: C. 424.3 V	
	Explanation: Given, the peak value of alternating voltage,	

	$\mathbf{V}_0 = 600 \ \mathbf{V}$	
	We have, rms voltage, $V_{\rm rms} = V_0 / \sqrt{2} = 600 / 1.414 = 424.3 V$	
	Find the average value of current when the current that are	
	equidistant are 4A, 5A and 6A.	
	A. 5A	
	B. 6A	
	C. 15A	
25.	D. 10A	1M
	Answer: A. 5A	
	Explanation: The average value of current is the sum of all the	
	currents divided by the number of currents. Therefore	
	average current = $(5+4+6)/3=54$	
	RMS stands for	
	A Root Mean Square	
	B Root Mean Sum	
	C Root Maximum sum	
	D Root Minimum Sum	
26.	D. Root Minimum Sum	1M
	Answer: A. Root Mean Square	
	Explanation: RMS stands for Root Mean Square. This value of	
	current is obtained by squaring all the current values, finding	
	the average and then finding the square root.	
	What is the effective value of current?	
	A. RMS current	
	B. Average current	
	C. Instantaneous current	
27.	D. Total current	
	Answer: A. RMS current	1M
	Explanation: RMS current is also known as the effective	
	current. KMS stands for Root Mean Square. This value of	
	current is obtained by squaring all the current values, finding	
	the average and then finding the square root.	

	In a sinusoidal wave, average current is always rms	
	current.	
	A. Greater than	
	B. Less than	
	C. Equal to	
	D. Not related	
28.	Answer: B. Less than	1M
	Explanation: The average value of current is the sum of all the	
	currents divided by the number of currents whereas RMS	
	current is obtained by squaring all the current values, finding	
	the average and then finding the square root. Hence RMS	
	current is greater than average current.	
	For a rectangular wave, average current is rms current.	
	A. Greater than	
	B. Less than	
	C. Equal to	
	D. Not related	
29.	Answer: C. Equal to	1M
	Explanation: The rms value is always greater than the average	
	except for a rectangular wave, in which the heating effect	
	remains constant so that the average and the rms values are	
	the same.	
	The Unit of Magnetic Flux is	
	A. Tesla	
	B. Weber	
	C. Weber - metre	
30.	D. None of the above	
	Answer: - B. Weber	1M
	Explanation: The SI unit of magnetic flux is Weber (Wb) or	
	tesla meter squared (Tm ²) named after German physicist	
	Wilhelm Weber.	

	FMF Stands for	
	A. Electromechanical force	
	B. Electromagnetic l force	
	C. Electromotive force	
31.	D. None of the above	
	Answer: - C. Electromotive force	1M
	Explanation: Electromotive force is defined as the electric	
	potential produced by either an electrochemical cell or by	
	changing the magnetic field. EMF is the commonly used	
	acronym for electromotive force.	
	2) Volt is equal to	
	A. Joule/Coulomb	
	B. Ampere/Seconds	
	C. Joule/Seconds	
	D. Coulomb/Seconds	
32.	Answer: - A. Joule/Coulomb	1 M
	Explanation: One Volt is equal to 1 Joule/Coulomb. There are	1 1/1
	many different definitions for the Volt, but the most common	
	is equal to 1 Joule/Coulomb. A volt is a unit of electromotive	
	force that measures the potential difference in electric	
	potential between two points. It is also known as a voltage	
	measured in volts (V).	
	B in B-H curve is known as	
	A. Reluctance	
33.	B. Magnetizing Force	
	C. Magnetic flux density	
	D. Magnetic Intensity	1M
	Answer: -C. Magnetic flux density	
	Explanation: The B-H curve, also known as the magnetization	
	curve or hysteresis curve, is a graphical representation that	

	relationship between the magnetic field strength (H) and the	
	magnetic flux density (B) of a material.	
	The Unit of Magnetic Flux Density is	
	A Tesla	
	B. Weher	
	C. Weber - metre	
34.	D. None of the above	
	Answer: - A. Tesla	1M
	Explanation: The tesla (symbolized T) is the standard unit	
	of magnetic flux density. It is equivalent to one weber per	
	meter squared (1 Wb/m ²).	
	MMF stands for	
	A. Magnetic Memory field	
	B. Magnetic Material Force	
	C. Magneto Motive Force	
35.	D. None of the above	1M
	Answer: - C. Magneto Motive Force	
	Explanation: MMF is the abbreviation used	
	for Magnetomotive force	
	H in B-H curve is known as	
	A. Reluctance	
	B. Magnetizing Force	
	C. Magnetic flux density	
36.	D. Magnetic Intensity	1M
	Answer: - B. Magnetizing force	
	Explanation: Magnetising force is represented by H, and has	
	the unit A.m ⁻	
	Hysteresis in magnetic circuit is phenomenon of	
37.	A. Lagging of B behind H	1M
	B. Lagging of H behind B	

	C. Setting up constant flux	
	D. None of the above	
	Answer: - A. Lagging of B behind H	
	Explanation: The B-H curve or magnetisation curve is the	
	graph plotted between magnetic flux density (B) and	
	magnetising force (H). The meaning of hysteresis	
	is"lagging". Hysteresis is characterised as a lag of magnetic	
	flux density (B) behind the magnetic field strength (H).	
	The SI Unit of Actual Permeability of free space is	
	A. Henry	
	B. Henry/Metre	
	C. Weber - metre	
	D. Farad/Metre	
38.	Answer: - B. Henry/Metre	1M
	Explanation: It is a constant of proportionality that exists	
	between magnetic flux density and magnetic field intensity.	
	The SI unit of permeability is Henry/meter.	
	Magnetic flux passes more readily through	
	A. Wood	
	B. Air	
	C. Iron	
39.	D. Vacuum	1 M
	Answer: - C. Iron	1141
	Explanation:The magnetic field lines prefer to pass through	
	iron than because the permeability of iron is much larger.	
	MMF in magnetic circuit corresponds to in electric circuit	
40.	A. Potential Difference	
	B. EMF	1M
	C. Current	
	D. Resistance	

	Answer: -B. EMF	
	Explanation: The magneto motive force, mmf or f, is	
	analogous to the electromotive force i.e EMF and may be	
	considered the factor that sets up the flux.	
	The B-H curve ofwill not be a straight line	
	A. Wood	
	B. Air	
	C. Soft Iron	
	D. Copper	
41.	Answer: - C .Soft Iron	1 M
	Explanation: Soft iron is a ferromagnetic material that is	
	commonly used in electromagnets and magnetic circuits due	
	to its high magnetic permeability. Soft iron has a nonlinear B	
	- H curve due to its high saturation magnetization.	
	Direction of induced EMF can be found out from	
	A Foredove low	
	A. Farauays law	
	C. Eleming right hand Dule	
	D. Lonz's law	
	D. LEIIZ Slaw	
42.	Answer: - C. Fleming right hand Rule	
	Explanation: Lenz's law suggests that the direction of induced	1M
	emf opposes the change in magnetic flux. The negative sign in	
	Faraday's law can be related to this law. Lenz's law gives the	
	direction of induced emf with respect to the change in	
	magnetic flux but Fleming's law gives the direction of induced	
	emf more accurately.	
	Which of the following material has least area of Hysteresis	
	loop	
43.	A. Wrought Iron	1 M
	B. Hard Steel	114
	C. Soft Iron	

	D. Silicon Steel	
	Answer: -C. Soft Iron	
	Explanation: Soft iron has the least hysteresis loop area	
	because it has low coercivity and high permeability.	
	Hysteresis loop area is a measure of the energy loss in a	
	ferromagnetic material when it is repeatedly magnetized and	
	demagnetized.	
	If charge Q is 4 coulombs and time t is 1 seconds then current	
	I is	
	A. 1 Ampere	
	B. 5 Ampere	
	C. 3 Ampere	
44.	D. 4 Ampere	1M
	Answer: - D. 4 Ampere	
	Explanation: - I = Q/t	
	= 4/1	
	= 4 A	
	If 3 joules work is done to charge a body to one coulomb Q	
	then voltage V is	
	A. 1 Volt	
	B. 2 Volt	
45.	C. 3 Volt	1M
	D. 4 Volt	
	Answer: - C. 3 Volt	
	Explanation: - $V = J/Q$	
	If current I is 7 amperes and time is 1 seconds then charge Q	
	is	
46.	A. 6 coulombs	1 M
	B. 7 coulombs	T 141
	C. 8 coulombs	

	D. 1 coulombs	
	Answer: - B. 7 coulombs	
	Explanation: - Q = I*t	
	The unit of frequency is	
47.	 A. Cycle B. Cycle-second C. Hertz/second D. Hertz Answer: - D. Hertz Explanation: Scientist Heinrich Rudolf Hertz was a German physicist who first conclusively proved the existence of the waves which are electromagnetic and this was predicted by James Clerk Maxwell's equations of electromagnetism. The unit that is of frequency is the cycle per second was named "hertz" in his honour. 	1M
48.	 The frequency of an alternating current is A. The speed with which the alternator runs B. The number of cycles generated in one minute C. The number of waves passing through a point in one second D. The number of electrons passing through a point in one second Answer: -C. The number of waves passing through a point in one second Explanation: The frequency of a wave is the number of waves that pass a point in a certain period of time. Frequency can also be described as the number of waves that pass a point in one second. 	1M

	The power factor of an AC circuit is equal to	
	A. Cosine of the phase angle	
	B. Sine of the phase angle	
40	C. Unity for a capacitive circuit	
49.	D. Unity for a inductive circuit	1M
	Answer: - A. Cosine of the phase angle	
	Explanation: Power factor of an ac circuit is equal to the	
	cosine of the angle between voltage and current.	
	If two sinusoids of the same frequency but of different	
	amplitudes and phase angles are subtracted, the resultant is	
	A. A sinusoid of the same frequency	
	B. A sinusoid of half the original frequency	
	C. A sinusoid of double the frequency	
50	D. Not a sinusoid	
50.	Answer: - A. A sinusoid of the same frequency	1M
	Explanation: - sinusoidal quantities with same frequency can	
	be added or subtracted & the resultant wave has same	
	frequency.	
	Form factor for a sine wave is	
	A. 1.414.	
	B. 0.707	
	C. 1.11.	
5.1		
	D. 0.637	1M
	Answer: - C. 1.11	
	Explanation: - form factor=RMS Value/Average Value=1.11	

	In an A.C. circuit power is dissipated in	
	A. Resistance only	
	B. Inductance only	
	C. Capacitance only	
52.	D. None of the above	1M
	Answer: - A. Resistance only	
	Explanation: - Resistance in a circuit that has a voltage drops across it and dissipates power	
	The voltage of domestic supply is 220 V. This value	
	A. Mean value	
	B. R.M.S value	
	C. Peak value	
	D. Average value	1M
	Answer: - B. R.M.S value	
	Explanation: - The voltage of domestic ac is 220 V, it	
	represents the root mean square voltage of supply.	
	The power consumed in a circuit element will be least when	
	the phase difference between the current and voltage is	
53.	A. 180°	
	B. 90°	1 M
	C. 60°	1 M
	D.0°	
	Answer: - B. 90°	

	Explanation: The cosine of an angle is maximum when the	
	angle is 0 and minimum when the angle is 90 degrees.	
	Therefore, the power consumed by a circuit element will be	
	least when the phase difference between the current and	
	voltage is 90 degrees.	
	The nower consumed by 230 volt 10 ampere and 0.8 nower	
	factor circuit is	
	A. 2300 Watt	
	B. 1840 Watt	
54.	C. 230 Watt	1M
	D. 1000 Watt	
	Answer: - A. 2300Watt	
	Fxnlanation: P = V*I* Power factor	
	Explanation. 1 – V 1 1 Ower lactor	
	Power factor of the following pure circuit will be zero	
	A. Resistance	
	B. Inductance	
	C. Capacitance	
	D. Both (B) and (C)	
55	Answer: - D. Both (B) and (C)	
55.		1M
	Explanation: For the purely inductive circuit, the power	
	factor is zero, because true power equals zero. For the purely	
	inductive circuit, the power factor is zero, because true power	
	equals zero.	
	The magnetic flux density in a magnetic field in which flux is	
	600 Microweber and area is 0.1 m2	
56.	A. 6000 microtesia	
	B. 600 microtesia	1M
	C. 6 tesla	
	D. 0.6 tesla	

	Which of following is advantage on 3 Phase AC over 1 Phase	
	AC System?	
	A. More output power	
	B. Less space required to produce same power	
	C. Self-starting of machine is possible	
	D. All of them	
	Answer: - D. All of them	
	Explanation: - To transmit a specific <u>power</u> over a specific	
	distance at a given rated <u>voltage</u> , a three phase system needs	
59.	less conductor material as compared to the single phase system.	1M
	The size of a three phase system operated machine is less	
	than the machine operated at single phase voltage having the	
	same output rating.	
	In a three phase power supply system, the less voltage drop	
	occurs from source to the load points,	
	A three phase supply produces uniform rotating magnetic	
	field therefore three phase motors are simpler in	
	construction, small in size and can be started automatically	
	with smooth operation.	
	Identifythecorrectphasesequence?	
60.	$+V_L$ A B C A B 0 90° 180° 360° 450° 540° time	1M
	(A) B-C-A (B)A-B-C	
	(C)C-A-B (D)Noneofabove	

	AlltherulesandlawsofD.C.circuitalsoapplytoA.C.circuitcontaining	
63	 A. Capacitanceonly B. Inductanceonly C. Resistanceonly D. All above Answer:-C. Resistance only Explanation:- Resistanceisnotchargeorenergystoringelementofelectricalcircuit. 	1M
64	CapacitivereactanceismorewhenA.CapacitanceandfrequencyofsupplyislessB.CapacitanceislessandfrequencyofsupplyismoreC.Capacitance is more and frequency of supply is lessD.CapacitanceandfrequencyofsupplyismoreAnswer:-A.Capacitanceandfrequencyofsupplyisless	1M
65	PureinductivecircuitA.ConsumessomepoweronaverageB.DoesnottakepoweratallfromalineC.StoreenergyinmagneticfieldandagainreturntosourceD.NoneoftheaboveAnswer:-C. StoreenergyinmagneticfieldandagainreturntosourceExplanation:-Nopowerisconsumedinthecircuit.	1M
66	Powerfactorofthefollowingpurecircuitwillbezero A. Resistance B. Inductance C. Capacitance D. Both(B)and(C)	1M

	Identifytypeofload	
71	(A) UnbalancedStarLoad (B)UnbalancedDeltaLoad (C)BalancedStarLoad	1M
	(D)BalancedDeltaLoa	
	d Answer-C BalancedStarLoad	
	Explanation:-Allimpedancesareequal	
	InbalancedstarorDeltaconnectedloadallphaseandlinevaluesofcurrent&voltag ewillbe	
	(A) Unequal	
78	(B)Dependsontypeofload	1M
	(C)Equal (D)Noneofabove	
	Answer:-C. Equal	
	Explanation:-Allimpedancesareequalsoallvalueswillbeequal	
	InUnbalancedstarorDeltaconnectedloadallphaseandlinevaluesofcurrent&vol	
79	tagewillbe	
	(A) Unequal	1M
	(B)Dependsontypeofload	
	(C)Equal (D)Noneofabove	

	B. 4.34 ohm	
	C. 5.65 ohm	
	D. 2.38 ohm	
	Answer: D. 2.38 ohm	
	Explanation: The 3 20hm resistors are connected in star, changing them to delta, we have R1=R2=R3= 2+2+2*2/2=6 ohm. The 3 60hm resistors are connected in parallel to the 10 ohm 5 ohm and 100hm resistors respectively. This network can be further reduced to a network consisting of a 3.750hm and 2.730hm resistor connected in series whose resultant is intern connected in parallel to the 3.75 ohm resistor.	
82	Delta connection is also known as A. Y-connection B. Mesh connection C. Either Y-connection or mesh connection D. Neither Y-connection nor mesh connection Answer: B. Mesh connection Explanation: Delta connection is also known as mesh	1M
	connection because its structure is like a mesh, that is, a closed loop which is planar.	
83	Ra is resistance at A, Rb is resistance at B, Rc is resistance at C in star connection. After transforming to delta, what is resistance between B and C? A. Rc+Rb+Rc*Rb/Ra B. Rc+Rb+Ra*Rb/Rc	1M

	Answer: C. line voltage = phase voltage Explanation: In a delta-connected load, the relation between line voltage and the phase voltage is line voltage = phase voltage	
	A polyphase system is generated by?	
	A. Having two or more generator windings separated by equal electrical angle.	
	B. Having generator windings at equal distances	
	C. None of the above	
	D. A and C	
86	Answer: Having two or more generator windings separated by equal electrical angle.	1M
	Explanation: A generator having two or more electrical windings which are separated by equal electrical angle generates a polyphase electrical system. The electrical angle or displacement depends upon the number of windings or phases. For example, in a three-phase electrical system, the generated voltages are separated from each other by	
	120° degrees.	
	In a three phase AC circuit, the sum of all three generated voltages is?	
	A. Infinite (∞)	
07	B. Zero (0)	1 M
87	C. One (1)	TIM
	D. None of the above	
	Answer: B. Zero (0)	
	Explanation: Three phase voltages are generated by having	

	an alternator with three armature windings such that each	
	winding is displaced from the other by 120 degrees. When	
	these windings are placed in a rotating magnetic field or	
	rotated in a stationary magnetic field, electromotive force is	
	generated in each coil, of same magnitude and direction.	
	For a star connected three phase AC circuit ———	
88	 A. Phase voltage is equal to line voltage and phase current is three times the line current B. Phase voltage is square root three times line voltage and phase current is equal to line current C. Phase voltage is equal to line voltage and line current is equal to phase current D. None of the above Answer: B. Phase voltage is square root three times line voltage and phase current is equal to line current 	1M
	Explanation: A star connected AC circuit is achieved by connecting each end of the winding to a common point known as neutral point and leaving the other end of each winding free. While voltage across each coil is the phase voltage, potential difference between each free end is the line voltage.	
89	 What is the type of current obtained by finding the square of the currents and then finding their average and then fining the square root? A. RMS current B. Average current C. Instantaneous current D. Total current Answer: A. RMS current Explanation: RMS stands for Root Mean Square. This value of current is obtained by squaring all the current values, finding the average and then finding the square root. 	1M

	Find the total current in the circuit if two currents of 4+5j	
	flow in the circuit.	
	A. 4+5j A	
	B. 4A	
	C. 5A	
	D. 8+10j A	
	Answer: D. 8+10j A	
90		1M
	Explanation: The total current in the circuit is the sum of the	
	two currents where we add the real parts and imaginary	
	parts separately.	
	Therefore, I total= 8+10j A.	
	What is the correct expression of ω?	
	A. $\omega = 2\pi$	
	B. $\omega = 2\pi f$	
	C. ω=πf	
	$D.\omega=2f^2$	
91		1M
	Answer: B. $\omega = 2\pi f$	
	Explanation: The correct expression for ω is $\omega = 2\pi f$ where f is	
	the angular frequency of the alternating voltage or current.	
	Find the value of ω if the frequency is 5Hz?	
	A. 3.14 rad/s	
92	B. 31.4 rad/s	
	C. 34 rad/s	
	D. 341 rad/s	
	Answer: B. 31.4 rad/s	1M
	Explanation: The expression for ω is $\omega = 2^* \pi^* f$.	
	Substituting the value of f from the question, we get ω =31.4	
	rad/s.	

	When one sine wave passes through the zero following the	
	other, it is	
	A. Leading	
	B. Lagging	
	C. Neither leading nor lagging	
	D. Either leading or lagging	
93		1M
	Answer: B. Lagging	
	Explanation: The sine wave is said to lag because it passes	
	though zero following the other, hence it crosses zero after	
	the first wave, therefore it is said to lag.	
	The time onic of an AC phonen represents?	
	A Time	
	A. Time B. Dhase angle	
	D. Flidse digie	
	C. Voltage	
	D. Current	
94	Answer: D. Flidse angle	1M
	Explanation: The time axis will emeasuring an AC sinusolual	
	converting it to a phasor	
	The length of the phasor represents?	
	A. Magnitude of the quantity	
	B. Direction of the quantity	
	C. Neither magnitude nor direction	
	D. Either magnitude or direction	1 M
56	Answer: A. Magnitude of the quantity	TIAI
	Explanation: The length of the phasor arrow represents the	
	magnitude of the quantity, whereas the angle between the	
	phasor and the reference represents the phase angle.	
		1

	The average power supplied to an inductor over one	
	complete alternating current cycle is:	
	A. U D. W/2	
	D. 1V ²	
	D. IR ²	
96	Answer: A.0	1M
	Explanation: For a pure inductor circuit. φ = 90° (∵ current	
	lags the voltage by 90° in the pure inductive circuit)	
	$\cos \phi = \cos 90^\circ = 0$	
	$\mathbf{P} = \mathbf{V}_{\text{max}}\mathbf{I}_{\text{max}}0$	
	1 – Vrmstrms O	
	$\mathbf{P} = 0 \mathbf{W}$	
	Ohm's law for magnetic circuits is	
	A. F=φS	
	B. F=φ/S	
	$\mathbf{C} \cdot \mathbf{F} = \mathbf{\Phi}^2 \mathbf{S}$	
	D. $F=\phi/S^2$	
	Answer: A. F=φS	
97		1M
	Explanation: Ohm's law for magnetic circuits states that the	
	MMF is directly proportional to the magnetic flux where	
	reluctance is the constant of proportionality.	
	What happens to the MMF when the magnetic flux decreases?	
	A. Increases	
98	B. Decreases	1 M
	C. Remains constant	TIM
	D. Becomes zero	
		1

	Answer: B. Decreases Explanation: Ohm's law for the magnetic circuit's states that the MMF is directly proportional to the magnetic flux hence as the magnetic flux decreases, the MMF also decreases.	
	Calculate the MMF when the magnetic flux is 5Wb and the reluctance is 3A/Wb. A. 10At B. 10N C. 15N D. 15At	
99	Answer: D. 15At Explanation: We know that: F=φS Substituting the given values from the question, we get MMF = 15At.	1M
100	 A ring having a cross-sectional area of 500 mm², a circumference of 400 mm and φ=800microWb has a coil of 200 turns wound around it. Calculate the flux density of the ring. A. 1.6T B. 2.6T C. 3.6T D. 4.6T Answer: A. 1.6T Explanation: φ=BA => Flux density B = φ/A Substituting the values, we get B=1.6T. 	1M

٦

Thank You

https://shikshamentor.com/basic-electrical-electronics-enggfor-msbte-k-scheme/

Visit

https://shikshamentor.com/

