

Model Answer –

Subject Name: Applied Mechanics

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

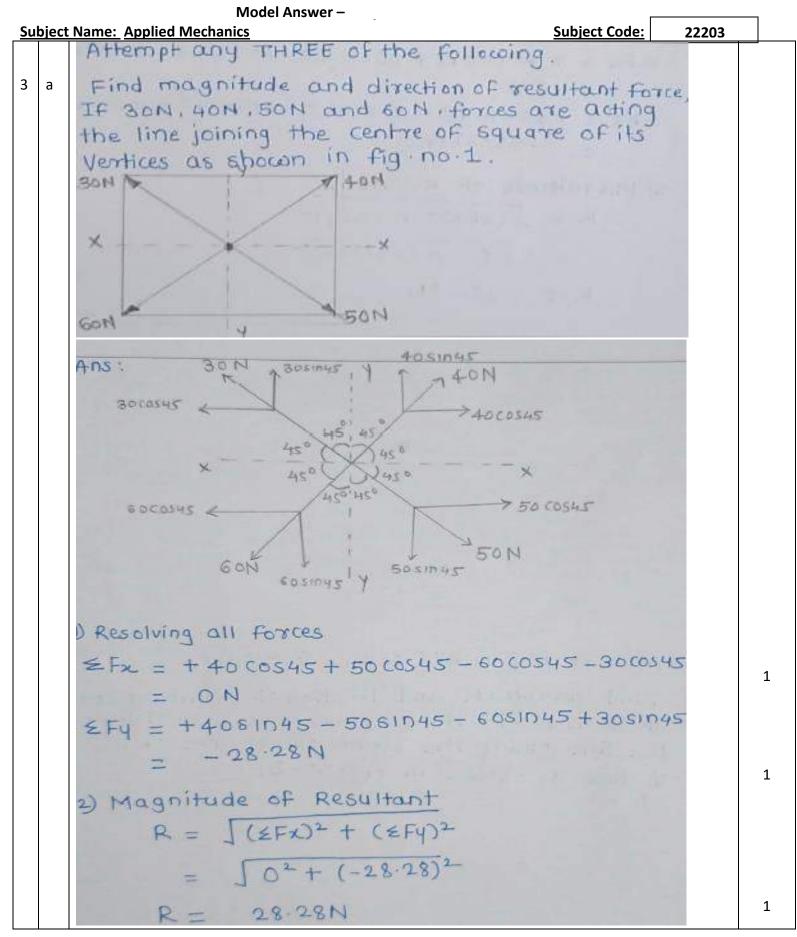
Subject Code:

22203

- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.
- 8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

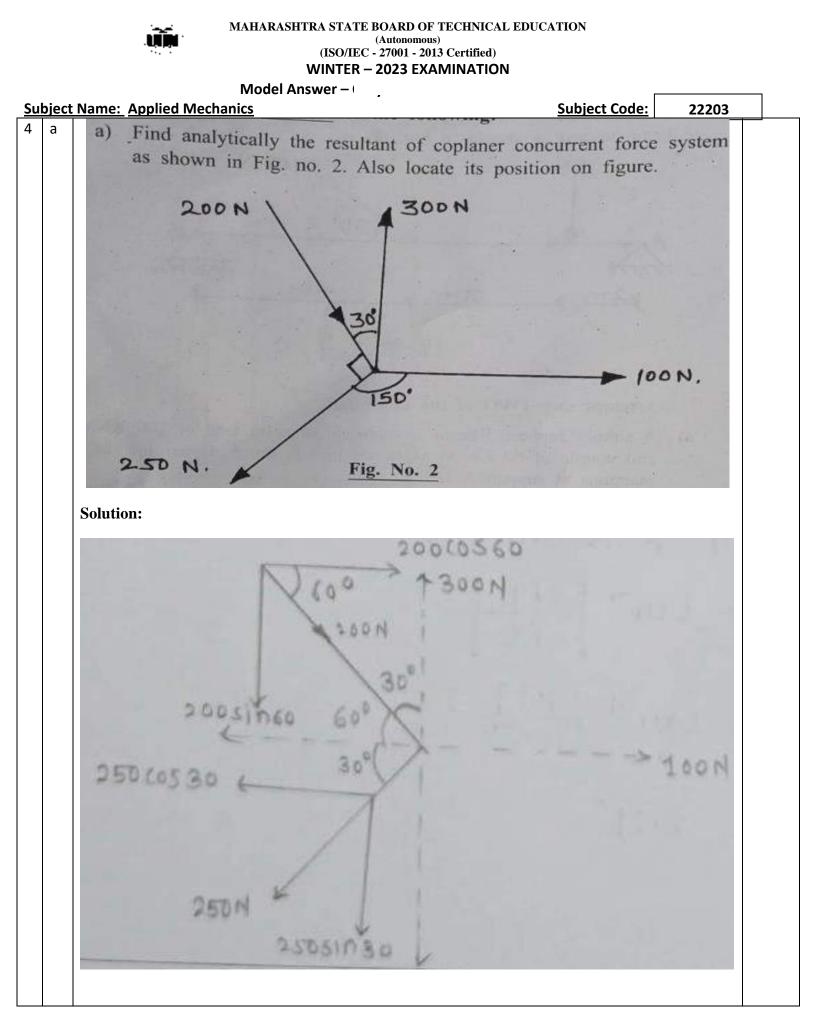
Q N o	Sub Q. No	Answer	Marking Scheme
1	а	State the SI unit of force and momentum.	1
		• SI Unit of Force: N (Newton)	mark
		• SI Unit of Momentum: kg m/s	for
			each
			correct
1	b	What is law of machine.	unit
1	b		1
		Law of Machine: - The relation between load lifted and effort applied is called the law of machine. Mathematically, $\mathbf{P} = \mathbf{m} \mathbf{W} + \mathbf{C}$	1
		Mathematically, $P = mW + C$ Where P offert applied W load lifted m slope C . Constant	1
4		Where P – effort applied, W – load lifted, m – slope, C - Constant	-
1	С	Define funicular polygon.	2
		The polygon is so constructed by drawing the lines in the respective spaces of space diagram; parallel	2
		to the rays of polar diagram by maintaining the order is called as 'funicular polygon.'	
1	d	Write the condition of equilibrium for non-concurrent coplanar force system.	2
		1. Sum of all the horizontal forces is equal to zero i.e. $\sum F_X = 0$	Marks
		2. Sum of all the vertical forces is equal to zero i.e. $\sum F_Y = 0$	for all
		3. Sum of the moments of all the forces about any point is equal to zero i.e. $\sum M_A = 0$	three
			condit
1	-	State two types of begins with diagrams of each	ions
1	е	State two types of beam with diagram of each.	
		Following are the different types of beams :	

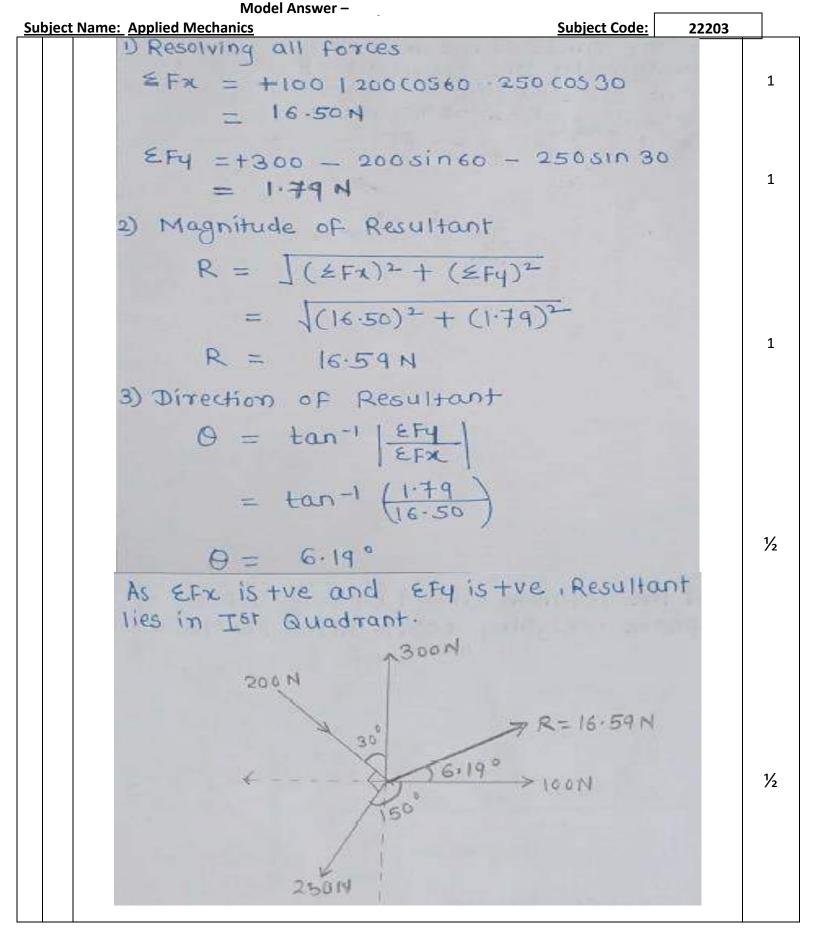
MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

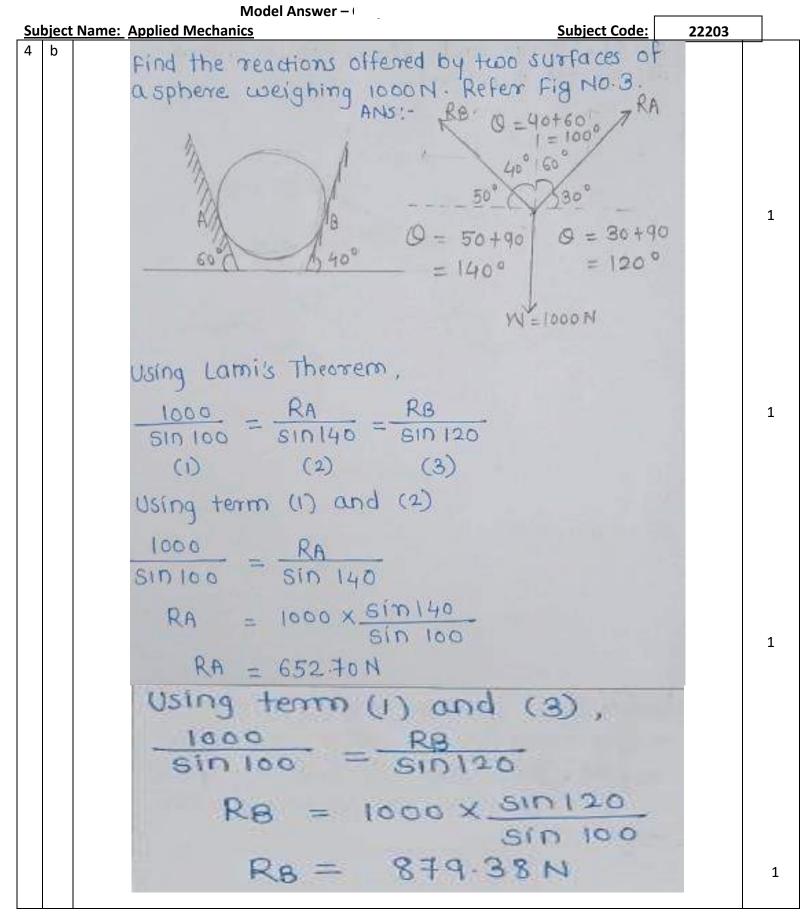

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER –

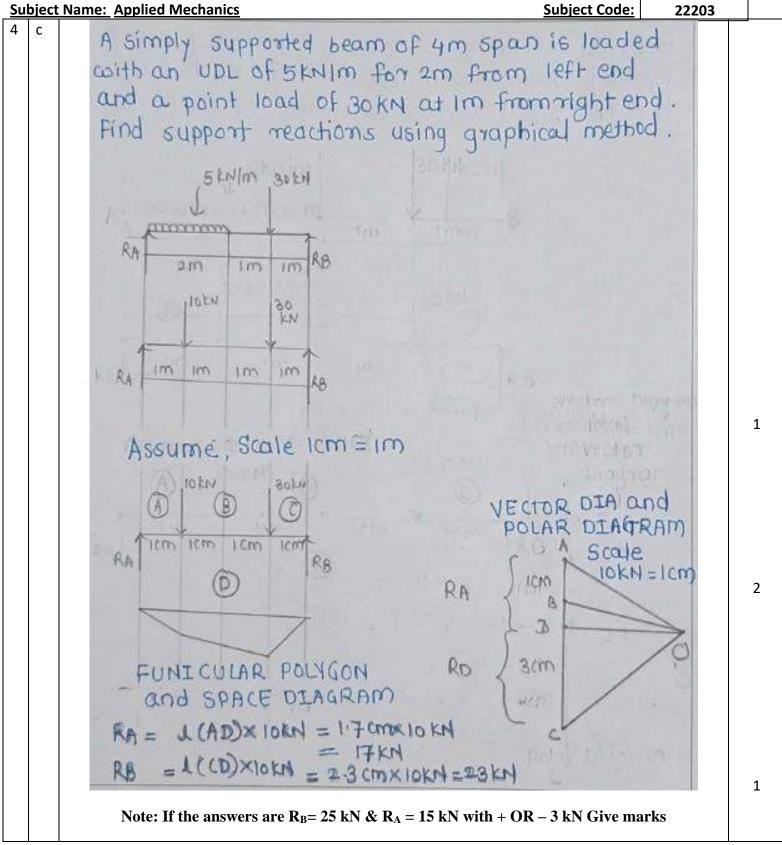
		Model Answer –	
Sul	oiect	Name: Applied Mechanics Subject Code: 22203	
		(i) Simply supported beam	
			1
		(ii) Cantilever beam	
			1
		(iii)Over hanging beam	(any
		↑ <u> </u>	two: 1 for
		(iv)Fixed Beam	each)
		I I	
		(v) Continuous beam	
		ΓL L	
1	f	What do you mean by friction?	
		Friction is defined as the resistance offered by the surfaces that are in contact when one or both the	2
		surfaces move relative to each other.	
1	g	Define Centre of gravity. How does it differ from centroid?	
		Centre of gravity is the point where the mass of the body or whole weight is concentrated.	1
		Centroid is defined as the point at which entire area of plane figures is supposed to be act irrespective	
		of the position of plane figure. Centre of gravity can be calculated for 3 dimensional figures and	
		Centroid can be calculated for 2 dimensional figures.	1
2	а	Sate any two properties and effects of force.	
		Properties of forces:	2
		Magnitude: The force of 25N or 3 kN means 25N or 3kN gives the quantity of a force is known as	(any
		its magnitude.	two:
		Sense or nature: Generally, the sense is indicated by an arrow head from which sense like pull or	1 for
		push can easily be understood.	each)
		Direction: The line of action along which force acts is called as direction.	
		Point of application: The point at which the force acts is known as point of application.	2
		A force may produce the following effects on a body, on which it acts:	(any
		(a) It may accelerate and retard the motion of body	two:
		(b) It may change the state of rest or motion of body.	1 for
		(c) It may change the shape and size of body.	each)
		(d) It may turn or rotate the body.	
		(e) It may keep the body in equilibrium	

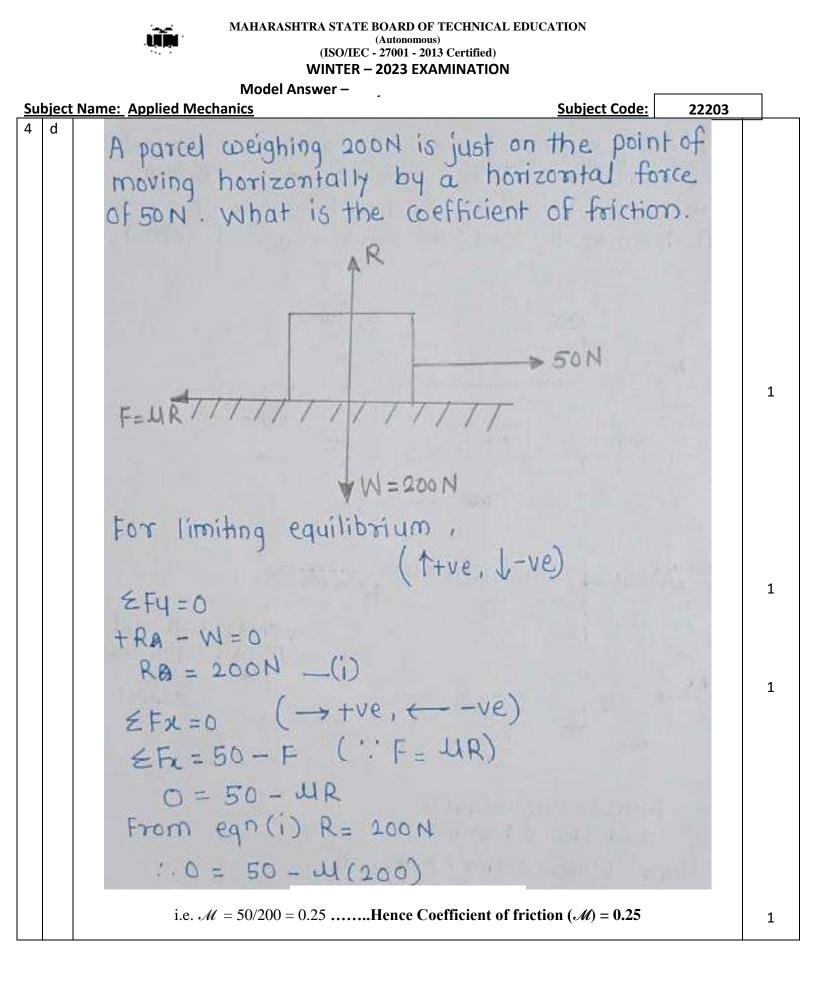

		Model Answer –	
<u>Su</u>	bject	Name: Applied Mechanics 22203	
2	b	Certain machine has a law of machine P= 0.025W + 20 N with V.R. = 50. Calculate the	
		efficiency at a load of 1KN.	
		Given Data: Law of Machine - $P = 0.025W + 20 N$, V.R. = 50, $W = 1KN = 1000N$	
		At W = 1kN =1000N, i. e. $P = 0.025 X 1000 + 20 = 45N$	1
		Efficiency is given by $\eta = \frac{MA}{VR} \times 100$	1
		$\eta = \frac{W/P}{VR} \times 100$	
		$\eta = \frac{1000/45}{50} \times 100$	1
		$\eta=44.44\%$	1
2	с	Define effort lost in friction and load lost in friction. Give expression for them.	
		Effort lost in friction: It is the additional effort required to overcome the friction.	
		Effort lost in friction is given by $P_f = P - P_i$	1
		Where, $P = Effort \& P_i = W/VR = Ideal effort, VR = Velocity Ratio OR$	1
		Effort lost in friction = $Pf = P - \frac{W}{VR}$	-
		Load Lost in friction: It is the additional load that might have been lifted by machine for given effort when there would have no friction.	1
		Load lost in friction is given by $W_f = W_i - W$	
		Where, $W = Load \& W_i = P \times VR = Ideal load$ Load lost in friction = $Wf = P \times VR - W$	1
2			
2	d	Define angle of repose with diagram.	
		Angle of repose is defined as the angle made by the inclined plane with the horizontal plane at which	
		the body placed on an inclined plane is just on the point of moving down the plane, under the action of its own weight	2
		of its own weight.	2
		w	
		* F	2
		$\Theta_{\mathbf{R}}$ \mathbf{R} $\Theta_{\mathbf{r}}$ is angle of repose	

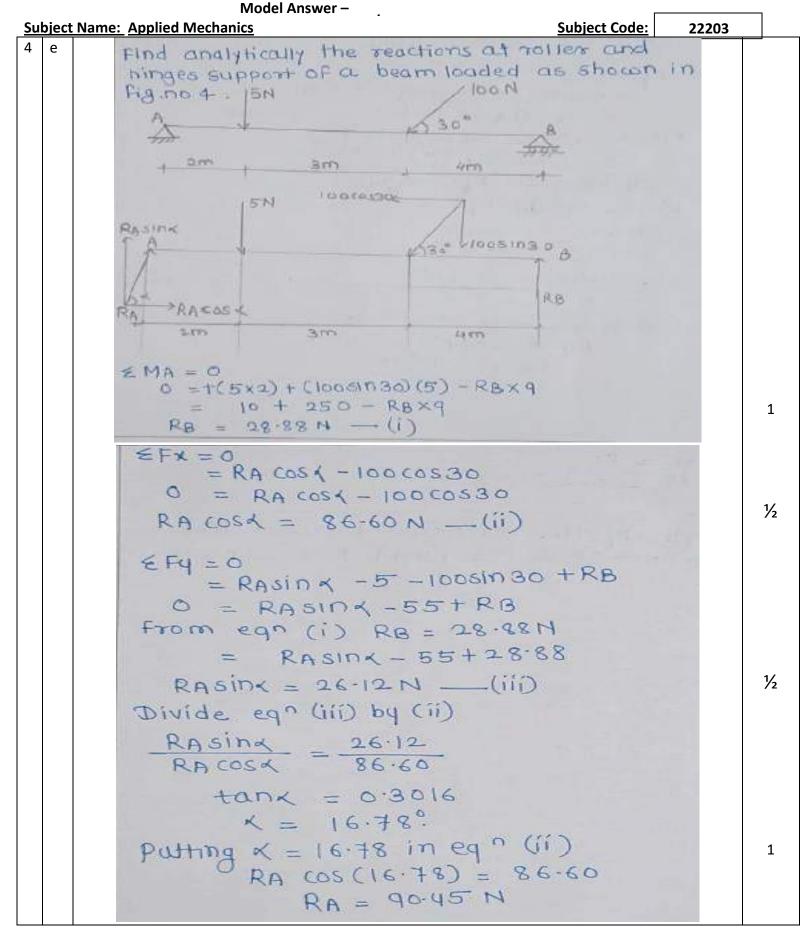

<u>Su</u>	bject	Model Answer –	
		B) Direction of Resultant $\Theta = \tan^{-1} \left(\underbrace{\leq F_{4}}_{\leq F_{x}} \right)$ $= \tan^{-1} \left(\underbrace{28 \cdot 28}_{0} \right)$ $= \tan^{-1} (c_{0})$ $\Theta = 90^{\circ}$ 4) As, F_{x} = ON, F_{y} = -ve, Resultant is on y-axis (-ve) lies	1
3	b	Note: : If problem is solved by using another concept or method with correct answers give full marks	
		State any Four properties of couple. Following are the properties of couple. 1. The algebric sum of the forces consisting the couple is zero.	1
		2. The algebric sum of the moment of the forces constituting the couple about any point is the same and equal to the moment of the couple itself.	1
		3. A couple cannot be balanced by a single force but can be balanced only by a couple but of opposite sense.	1
		4. Any number of coplanar couples can be reduced to a single couple whose magnitude will be equal to the algebric sum of the moments of all the couples.	1

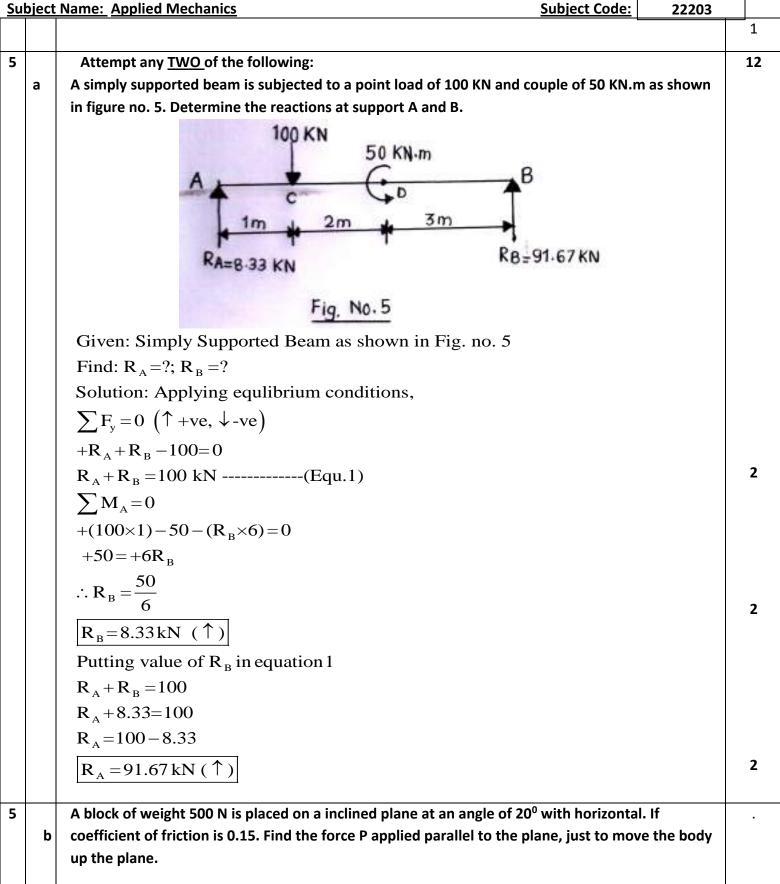


		Model Answer –	
Su	bject	t Name: Applied Mechanics Subject Code: 22203	
3	С	For three sheave pulley block an effort of 40 N can lift a load of 180 N. Calculate the effort lost in friction and load lost in friction along with efficiency.	
		Given: P= 40 N, W = 180 N	
		For three sheave pulley block $VR = 2 X$ Number of sheave $= 2x 3 = 6$	1
		M. A. = W/P = $180/40 = 4.5$	
		Efficiency is given by $\eta = \frac{MA}{VR} \times 100$	
		Hence $\dot{\eta} = (4.5 / 6) \times 100 = 75\%$	1
		Effort lost in friction is given by $P_f = P - P_i$ Where, $P = 40$ N, & $P_i = W/VR =$ Ideal effort = 180/6 = 30 N	
		$P_{f} = 40 - 30 = 10 \text{ N}$	
		Load lost in friction is given by $W_f = W_i - W$	1
		Where, W=180 N & W _i = P x VR = Ideal load = 40 x 6 = 240N	
		$W_f = 240 - 180 = 60 N$	1
3	d	In a lifting machine an effort of 110 N raised a load of 1100 N and an effort 500 N raised a load of 5800 N. Find the law of machine.	
		Given: Reading 1: P_1 = 110 N, W_1 = 1100 N and Reading 2: P_2 = 500 N, W_2 = 5800 N	
		Find :Law of Machine i. e. $P = mW + CValues$ of slope (m) & C in this equation.	
		We know that Law of Machine is given by $P = mW + C$	
		Preparing two equations for readings $110 = m \times 1100 + C(1)$	1
		$500 = m \ge 5800 + C(2)$	
		By subtracting Eq (1) from (2) we get $390 = 4700 \text{ m}$	1
		Hence $\dots \mathbf{m} = 0.083$ Put this in equation (1)	1
		110 = 0.083 x 1100 + C hence $C = 110 - 91.3 = 18.7 N$	Ŧ
		Hence Law of Machine is $P = 0.083W + 18.7 N$	1
4		Attempt any THREE of the following	12





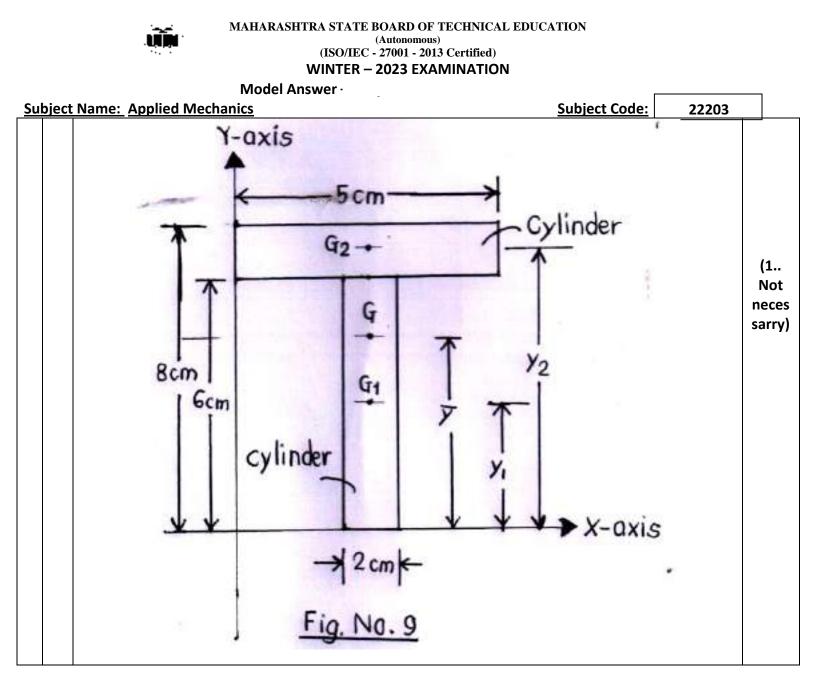

Model Answer –





Model Answer –

		Model Answer –			
<u>Su</u>	bject	Name: Applied Mechanics	Subject Code:	22203	
		$\mathbf{R} = \sum Fy = 0, \uparrow +ve, \downarrow -ve$			
		R = +40 - 35 + 20 - 60			
		$R = -35 \text{ KN}(\downarrow)$			1
		Let, <i>x</i> be the distance of R from 40 N force.			1
		Applying Varignon's theorem of moment about point 'A'			
		$-(35\times2)-(20\times6)-(60\times8)=(R\times x)$			1
		$+430 = (35 \times x)$			1
		x = (430/35)			1
		x = 12.28 m			
		R = 35 N lies at 12.28 cm from 40 N force vertically downward.			1
6		Attempt any TWO of the following:			12
		Find centroid for ISA 90x60x8 mm (L section) as shown in fig. no. 7.			
		90mm fig. No.			


Model Answer –			_
Subject Name: Applied Mechanics	<u>Subject Code:</u>	22203	
Given: ISA 90 \times 60 \times 8 mm as shown in Fig. no. 7			
Find: Position of centroid, $G(\overline{x}, \overline{y}) = ?$			
Solution: To find \overline{x} , \overline{y} of given section,			
Calculation of areas :			
$A_1 = L \times B = 60 \times 8 = 480 \mathrm{mm}^2$			
$A_2 = L \times B = 82 \times 8 = 656 \mathrm{mm}^2$			1
Calculation of horizontal distances of centroids from Y-axis:			
$x_{1} = \frac{L}{2} = \frac{60}{2} = 30 \text{ mm}$ $x_{2} = \frac{B}{2} = \frac{8}{2} = 4 \text{ mm}$			1
Calculation of vertical distances of centroids from X-axis:			
y ₁ = $\frac{B}{2} = \frac{8}{2} = 4 \text{ mm}$ y ₂ =8+ $\frac{L}{2}$ =8+ $\frac{82}{2}$ =49 mm			1
Calculation of \overline{x} :			
$\overline{\mathbf{x}} = \frac{(\mathbf{A}_1 \times \mathbf{x}_1) + (\mathbf{A}_2 \times \mathbf{x}_2)}{\mathbf{A}_1 + \mathbf{A}_2} = \frac{(480 \times 30) + (656 \times 4)}{480 + 656} = \overline{\mathbf{x}} = 14.98 \text{ mm}$			1
Calculation of \overline{y} :			
$\overline{y} = \frac{(A_1 \times y_1) + (A_2 \times y_2)}{A_1 + A_2} = \frac{(480 \times 4) + (656 \times 49)}{480 + 656} = \overline{\overline{y}} = 29.98 \text{ mm}$			1
Note: Figure No. 7 with location of centroid is given below			
Y-axis g_{nm} g_{2} g_{2} g_{2} g_{2} g_{2} g_{2} g_{3} g_{1} g_{1} g_{1} g_{2} g_{2} g_{2} g_{3} g_{1} g_{1} g_{1} g_{2} g_{2} g_{2} g_{3} g_{1} g_{1} g_{1} g_{2} g_{2} g_{2} g_{2} g_{3} g_{2} g			1
FIG. NO. /			

Model Answer – Subject Code: Subject Name: Applied Mechanics 22203 Locate the position of centroid for the lamina shown in fig. no. 8 6 b 800 mm Fig. No. 8 Given: Lamina as shown in Fig. no. 8 Find: Centroid, $G(\overline{x}, \overline{y}) = ?$ Solution: Calculation of areas: $A_1 = L \times B = = 800 \times 400 = 320000 \text{ mm}^2$ $A_2 = \frac{\pi}{8} \times d^2 = \frac{\pi}{8} \times 400^2 = 62831.85 \,\mathrm{mm}^2$ 1 $A_3 = \frac{\pi}{8} \times d^2 = \frac{\pi}{8} \times 400^2 = 62831.85 \,\mathrm{mm}^2$ Calculation of distances of centroids from y-axis. $x_1 = \frac{L}{2} = \frac{800}{2} = 400 \,\text{mm}$ $x_2 = \frac{4.R}{3\pi} = \frac{4 \times 200}{3 \times \pi} = 84.88 \,\mathrm{mm}$ 1 $x_2 = 800 - \frac{4.R}{3\pi} = 800 - \frac{4 \times 200}{3 \times \pi} = 715.12 \text{ mm}$ $\frac{-}{x} = \frac{(A_1 \times x_1) - (A_2 \times x_2) - (A_3 \times x_3)}{A_1 - A_2 - A_3} = \frac{(320000 \times 400) - (62831.85 \times 84.88) - (62831.85 \times 84.88)}{320000 - 62831.85 - 62831.85}$ 1 $\overline{x} = 400 \,\text{mm}$ Calculation of distances of centroids from x-axis. $y_1 = \frac{B}{2} = \frac{400}{2} = 200 \text{ mm}$ $y_2 = \frac{D}{2} = \frac{400}{2} = 200 \,\mathrm{mm}$ $y_3 = \frac{D}{2} = \frac{400}{2} = 200 \,\text{mm}$ 1 $\overline{\mathbf{y}} = \frac{(\mathbf{A}_1 \times \mathbf{y}_1) \cdot (\mathbf{A}_2 \times \mathbf{y}_2) \cdot (\mathbf{A}_3 \times \mathbf{y}_3)}{\mathbf{A}_1 \cdot \mathbf{A}_2 \cdot \mathbf{A}_3} = \frac{(320000 \times 200) - (62831.85 \times 200) - (62831.85 \times 200)}{320000 - 62831.85 - 62831.85}$ 1 $y = 200 \,\mathrm{mm}$

	Model Answer –	
Subject	Name:Applied MechanicsSubject Code:22203	<u></u>
	$\overline{y}_{=200}, \overline{y}_{1}=\overline{y}_{2}=\overline{y}_{3}$ $\overline{x}_{1}=\overline{x}_{2}=400 \text{ mm}}$ $\overline{y}_{=400 \text{ mm}}$ $\overline{y}_{=200}, \overline{y}_{1}=\overline{y}_{2}=\overline{y}_{3}$ $\overline{x}_{1}=\overline{x}_{1}$ $\overline{x}_{2}=400 \text{ mm}}$ \overline{OR}	1
	ON Alternative solution: As the figure is symmetrical about X-X & Y-Y axes	
	$\overline{x} = 400 \text{ mm} \text{ and}$ Note: Above figure with location of centroid is given.	6
6 c	Find the y of the composite body given in Fig. no. 9.	
	Given: Composite body as shown in Fig. no. 9	
	Find: $\overline{y} = ?$	
	Solution: To find \overline{y} of given section,	
	Calculation of volumes:	
	$\mathbf{V}_1 = \pi \times r^2 \times h = \pi \times 1^2 \times 6 = 18.85 \mathrm{cm}^2$	1
	$\mathbf{V}_2 = \pi \times r^2 \times h = \pi \times 2.5^2 \times 2 = 39.27 \mathrm{cm}^2$	1
	Calculation of vertical distances of centroids from X-axis:	
	$y_1 = \frac{B}{2} = \frac{6}{2} = 3 cm$	1
	$y_2 = 6 + \frac{2}{2} = 6 + \frac{2}{2} = 7 \text{ cm}$	1
	Calculation of \overline{y} :	
	$\overline{y} = \frac{(V_1 \times y_1) + (V_2 \times y_2)}{V_1 + V_2} = \frac{(18.85 \times 3) + (39.27 \times 7)}{18.85 + 39.27}$	
	$\overline{y} = 5.702 \text{ mm}$	2

