

https://shikshamentor.com/applied-maths-semii-diploma-msbte-k-scheme-syllabus/ 312301 – Applied Mathematics (Sem II) As per MSBTE's K Scheme CO / CM / IF / AI / AN / DS

Unit IV NUMERICAL METHODS		Marks - 14		
S. N.	MSBTE Board Asked Questions	Exam Year	Marks	
1.	Show that there exists a root of the equation $x^2 - 2x - 1 = 0$ in (-1, 0) and find approximate value of the root by using Bisection method. (Use two iterations)	S-18	2M	
2.	Solve the following system of equations by Jacobi's – Iteration method. (Two iterations) 5x + 2y +z = 12; x + 4y + 2z = 15; x + 2y + 5z = 20	S-18, W-19	3	
3.	Solve the following system of equations by using Gauss-Seidal method. (Two iterations) 15x + 2y + z = 18; 2x + 20y - 3z = 19; 3x - 6y + 25z = 22	S-18, S-19	3	
4.	Find the approximate root of the equation, $x4 - x - 10 = 0$ by Newton–Raphson method. (Carry out four iterations).	S-18	6	
5.	Find approximate root of the equation $x^2 + x - 3 = 0$ in (1, 2) by using Bisection method. (Use two iterations)	S-19, W-18	2/3	
6.	Solve the following system of equations by using Gauss - Seidal method. (Two iterations) 5x - 2y + 3z = 18; $x + 7y - 3z = 22$; $2x - y + 6z = 22$.	S-19	3	
7.	Using Newton - Raphson method find the approximate value of $\sqrt[3]{100}$ (Perform 4 iterations)	S-19, S- 17, W- 17	6	
8.	Find a real root of the equation $x^3 - 4x - 9 = 0$ by using bisection method	S-22, W-18	2	
9.	Find the root of the equation cosx- xex= 0 using the regular-falsi method. (carry out two iterations)	S-22	3	

10.	Solve the following system of equations by using Gauss Seidal method. 20x + y - 2z = 17 ; 3x + 20y - z = -18 ;2x - 3y + 20z = 25.	S-22	6
11.	Using Newton-Raphson method to find the approximate root of the equation x log10x = 1.2. (carry out three iterations)	S-22	6
12.	Show that the root of $x3 - 9x + 1 = 0$ lies between 2 and 3.	W-18	2
13.	Solve the following system of equations by using Gauss Seidal method (use four iterations) correct upto 3 places of decimals. x + 7y - 3z = -22; $5x - 2y + 3z = 18$; $2x - y + 6z = 22$	W-18, W-17	6
14.	Using Newton-Raphson method find the approximate root of the equation correct upto 3 places of decimals. x3 - 2x - 5 = 0 (Use four iterations)	W-18	6
15.	Find a real root of equation $x3 + 4x - 9 = 0$ in the interval (1,2) by using bisection method (only one iteration)	W-19	2
16.	Solve the equation by Gauss - Seidal method. (two iterations only) 10x + y + 2z = 13; $3x + 10y + z = 14$; $2x + 3y + 10z = 15$	W-19, S-17	3
17.	Using Newton - Raphson method find the approximate root of the equation (use four iterations) $x^2 + x - 5 = 0$	W-19	6
18.	Show that the root of the equation $x_3 - x - 4 = 0$ lies between 0 & 2.	W-22, S-17	2
19.	Solve the following by using Jacobi's method upto four iterations 20x + y - 2z = 17; $3x + 20y - z = -18$; $2x - 3y + 20z = 25$.	W-22, W-18, W-19	6
20.	Using Bisection method find approximate roots of the equation $x^3 - x - 4 = 0$ upto three iterations.	W-22	3
21.	Find approximate value of $\sqrt[3]{7}$ by using Newton Raphson method. (three iterations only)	W-22, W-17	6
22.	Show that the root of $x3 - 9x + 1 = 0$ lies between 2 and 3. Obtain the roots by bisection method (3 iterations only)	S-17	4
23.	Using Regula – Falsi method, find the root of xex – 3 = 0 (three iterations only)	S-17	4

24.	Using Bisection method, find the approximate root of $x3 - 2x - 5 = 0$ in the interval (2, 3) (3 iterations only)	S-17, S-19	4
25.	Find the roots of the equation using Newton-Raphson method x2 - $4x - 6 = 0$ near to 5. (three iterations only)	S-17	4
26.	Solve by Jacobi's method upto 3 iterations only 30x + y + z = 32; x + 30y + z = 32; x + y + 30 = 22	S-17	4
27.	Solve by Gauss-seidal method (3 iterations only) 6x + y + z = 105; $4x + 8y + 3z = 155$; $5x + 4y - 10z = 65$	S-17, W-17	4
28.	Solve by Jacobi's method: 4x + y + 2z = 12; -x + 11y + 4z = 33; 2x - 3y + 8z = 20 (3 iterations only).	S-17	4
29.	Using Gauss seidal method find first iteration for the system of equations: 8x + 2y + 3z = 30; $x - 9y + 2z = 1$; $2x + 3y + 6z = 31$	S-18	2
30.	Show that the root of equation xex – 3 = 0 lies in the interval (1, 2).	S-18	2
31.	Using Bisection method find the approximate root of the equation $x3 - 6x + 3 = 0$ (Perform three iterations)	S-18, W-19	4
32.	Use Regular falsi method to find approximate root of the equation $x^3 - x - 4 = 0$ (Three iterations)	S-18	4
33.	Use Newton Raphson method to evaluate $\sqrt[3]{20}$ (upto three iterations only)	S-18	4
34.	Using Bisection method find the root of the equation $x^3 - 4x - 9 = 0$ in the interval (2, 3).	S-18	4
35.	Using Jacobi's method, solve the system of equations: 10x + 2y + z = 9; $2x + 20y - 2z = 44$; $-2x + 3y + 10z = 22$ (Perform three iterations)	S-18	4
36.	Using Gauss-seidal method, solve the equations: 5x - y = 9; $x - 5y + z = -4$; $y - 5z = 15$ (Perform three iterations)	S-18	4
37.	Using Jacobi's method, solve the equations 2x + 3y - 4z = 1; $5x + 9y + 3z = 17$; $8x - 2y - z = 5$ (Perform Three Iterations)	S-18	4

38.	Show that there exist a root of the equation $x^3 - 4x + 1 = 0$ in the interval (1, 2)	S-19	2
39.	Find by Jacobi's method, the first iteration only for the following equations $5x - y = 9$; $x - 5y + z = -4$; $y - 5z = 6$	S-19	2
40.	Using false position method, find the root of the equation $x^2 + x - 3 = 0$ in the interval (1, 2) by performing three iterations.	S-19, W-18	4
41.	Solve $x_3 - x - 1 = 0$ by Newton Raphson method (up to three iterations.)	S-19, W-19	4
42.	Find the root of $e-x - x = 0$ by bisection method (up to three iterations.)	S-19	4
43.	Solve the following equations by Jacobi's method (take three iterations.) 20x + y - 2z = 17; $2x - 3y + 20z = 25$; $3x + 20y - z = 18$	S-19	4
44.	Solve the equations by GuassSeidal method (up to three iterations.) 8x + 2y + 3z = 30; x - 9y + 2z = 1; 2x + 3y + 6z = 31	S-19	4
45.	With the following system of equations: 3x + 2y = 4.5; $2x + 3y - z = 5$; $-y + 2z = 0.52Set up the Gauss Seidal iterations scheme for solution. Iterate twotimes, using initial approximations x0 = 0.4, y0 = 1.6, z0 = 0.4$	S-19	4
46.	Show that there exist a root of the equation $x^3 + 2x^2 - 8 = 0$ between 1 and 2.	W-17	2
47.	Solve the following equations by using Gauss-Seidal method (only first iteration) 10x + 2y + z = 9; x + 10y - z = 22; -2x + 3y + 10z = 22	W-17	2
48.	Using Regula-Falsi method, find approximate root of x3 – 9x + 1 = 0 (Three iterations only)	W-17, W-19	4
49.	Solve by Newton-Raphson method $x3 + 2x - 20 = 0$ (Three iterations only)	W-17	4
50.	Solve the equation by Jacobi's method. (Three iterations only) 10x + y + 2z = 13; $3x + 10y + z = 14$; $2x + 3y + 10z = 15$	W-17	4
5.1	With the following system of equations: 3x + 2y = 4.5; $2x + 3y - z = 5$; $-y + 2z = 0.52Find one iteration only using Gauss Seidal Method$	W-18	2

52.	Using Bisection method find the approximate root of the equation x log10x = 1.2.	W-18, W-19	4
	Use Newton-Raphson method to find root of equation $x^2 + x - 3 = 0$ (upto three iterations)	W-18	4
53.	Solve the following equation using Gauss Seidal method. 10x + y + z = 12; $x + 10y + z = 12$; $x + y + 10z = 12$	W-18	4
54.	Show that root of equation $x^2 + x - 3 = 0$ lies between 2 and 3.	W-19	2
55.	With the following system of equations: 5x - y = 9; $5y - z = 6$; $x + 5z = -3$ Set up Gauss seidal iteration scheme for the solution. Iterate two times using initial approximations, $x0 = 1.8$, $y0 = 1.2$, $z0 = -0.96$	W-19	4

Thank You

https://shikshamentor.com/applied-maths-sem-ii-diploma-

msbte-k-scheme-syllabus/

Visit

https://shikshamentor.com/

