

#### MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

#### **Model Answer: Winter - 2022**

**Subject: Applied Mechanics** 

**Sub. Code: 22203** 

#### Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.
- As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                  | Marks | Total<br>Marks |
|-------------|--------------|--------------------------------------------------------------------------------|-------|----------------|
| Q. 1        |              | Attempt any <u>FIVE</u> of the following:                                      |       | (10)           |
|             |              |                                                                                |       |                |
|             | a)           | Define force system and state its classification.                              |       |                |
|             | Ans.         | Force System: When two or more forces are acting on a body, then               |       |                |
|             |              | the formed arrangement is known as Force System.                               | 1     |                |
|             |              | Classification of Force System:                                                |       |                |
|             |              | 1. Coplanar force system:                                                      |       | 2              |
|             |              | a. Co-planner collinear force system.                                          |       |                |
|             |              | b. Co-planner concurrent force system.                                         |       |                |
|             |              | c. Co-planner non-concurrent force system.                                     | 1     |                |
|             |              | d. Co-planner parallel force system.                                           |       |                |
|             |              | 2. Non-coplanar force system:                                                  |       |                |
|             |              | a. Non-co-planner collinear force system.                                      |       |                |
|             |              | b. Non-co-planner concurrent force system.                                     |       |                |
|             |              | c. Non-co-planner non-concurrent force system.                                 |       |                |
|             |              | d. Non-co-planner parallel force system.                                       |       |                |
|             | <b>b</b> )   | State the meaning of reversible machine and state condition for reversibility. |       |                |
|             | Ans.         | <b>Reversible machine:</b> When the machine moves in reverse direction         | 1     |                |
|             | Alls.        | after removal of applied effort, then the machine is said to be                | 1     |                |
|             |              | reversible machine.                                                            |       | 2              |
|             |              | Condition for reversibility: When the machine has efficiency more              | 1     | <i>_</i>       |
|             |              | than 50 %, machine is said to be reversible.                                   | 1     |                |
|             |              | man 50 %, machine is said to be reversible.                                    |       |                |



### **Model Answer: Winter - 2022**

**Subject: Applied Mechanics** 

| Que. | Sub.       | M. J.1 A                                                                                                                                                                                                                                                                                                                          | Manla | Total |
|------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| No.  | Que.       | Model Answers                                                                                                                                                                                                                                                                                                                     | Marks | Marks |
| Q. 1 | c)<br>Ans. | State Polygon Law of forces.  Polygon Law of forces: If any number of coplanar concurrent forces can be represented in magnitude and direction by the sides of a polygon taken in order; then their resultant will be represented by the closing side of the polygon taken in opposite order.                                     | 2     | 2     |
|      | d)         | State analytical conditions of equilibrium for coplanar non-concurrent force system.                                                                                                                                                                                                                                              |       |       |
|      | Ans.       | <ol> <li>Σ Fx = 0 i. e. Algebraic sum of all the forces along X-axis must be equal to zero.</li> <li>Σ Fy = 0 i. e. Algebraic sum of all the forces along Y-axis must be equal to zero.</li> <li>Σ M<sub>A</sub> = 0 i. e. Algebraic sum of moments all the forces about any point (say point A)must be equal to zero.</li> </ol> | 2     | 2     |
|      | e)         | State relation between co-efficient of friction $(\mu)$ and angle of friction $(\varphi)$ .                                                                                                                                                                                                                                       |       |       |
|      | Ans.       | Relation between co-efficient of friction ( $\mu$ ) and angle of friction ( $\varphi$ ): $\mu = \tan \varphi$                                                                                                                                                                                                                     | 2     | 2     |
|      | f)         | Show the position of centroid of a quarter circle of radius 'R' with a neat sketch.                                                                                                                                                                                                                                               |       |       |
|      | Ans.       | Y-axis  Certhoid  6(2,7)  X-axis  Y-48  Y-48  Y-48  Redius R  Fashing of Centraid of a Quarter Circle                                                                                                                                                                                                                             | 2     | 2     |
|      | g)         | Calculate reaction and reactive moment for a cantilever beam loaded as shown in Fig. No. 1.                                                                                                                                                                                                                                       |       |       |
|      | Ans.       | Find:R <sub>A</sub> = ?; M <sub>A</sub> =? Solution:Reaction at point A $\sum Fy = 0 - \uparrow + ve; \downarrow -ve$ R <sub>A</sub> = - (4×2)= - 8 kN Reactive moment at point A $\sum M_A = 0$                                                                                                                                  | 1     | 2     |
|      |            | $\sum M_{\rm A} = -(4 \times 2 \times \frac{2}{2}) = -8 \text{ kN.m}$                                                                                                                                                                                                                                                             | 1     |       |



### **Model Answer: Winter - 2022**

**Subject: Applied Mechanics** 

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                                                                                                   | Marks | Total<br>Marks |
|-------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q. 2        |              | Attempt any <u>THREE</u> of the following:                                                                                                                                                                      |       | (12)           |
|             | a)           | Define scalar and vector quantities with two examples of each.                                                                                                                                                  |       |                |
|             | Ans.         | <b>Scalar quantity:</b> The physical quantity which has only magnitude, but no direction, is called as scalar quantity.                                                                                         | 1     |                |
|             |              | <b>Examples:</b> Mass, area, volume, density, time, speed, work, power                                                                                                                                          | 1     | 4              |
|             |              | <b>Vector quantity:</b> The physical quantity which has both magnitude and direction is called as vector quantity.                                                                                              | 1     |                |
|             |              | <b>Examples:</b> Force, weight, moment, velocity, acceleration.                                                                                                                                                 | 1     |                |
|             | <b>b</b> )   | A screw jack lifts a load of 41.25 kN with an effort of 550 N, applied at the end of handle of 60 cm. If the pitch of screw is 15 mm, calculate velocity ratio, mechanical advantage and efficiency of machine. |       |                |
|             | Ans.         | Given: Simple Screw Jack                                                                                                                                                                                        |       |                |
|             |              | W = 41.25  kN = 41250  N                                                                                                                                                                                        |       |                |
|             |              | P = 550  N                                                                                                                                                                                                      |       |                |
|             |              | L = 60  cm = 600  mm                                                                                                                                                                                            |       |                |
|             |              | P = 15 mm                                                                                                                                                                                                       |       |                |
|             |              | Find: MA, $VR$ , = ?                                                                                                                                                                                            |       |                |
|             |              | Solution:                                                                                                                                                                                                       | 2     |                |
|             |              | V. R. = $\frac{2\pi L}{1} = \frac{2 \times \pi \times 600}{1} = 251.32$                                                                                                                                         |       | 4              |
|             |              | p 15                                                                                                                                                                                                            | 1     |                |
|             |              | M. A. $=\frac{W}{P} = \frac{41250}{250} = 75$                                                                                                                                                                   |       |                |
|             |              | $\eta = \frac{M \text{ A}}{\text{V R}} \times 100 = \frac{75}{251.32} = 29.84\%$                                                                                                                                | 1     |                |
|             |              |                                                                                                                                                                                                                 |       |                |
|             |              |                                                                                                                                                                                                                 |       |                |
|             |              |                                                                                                                                                                                                                 |       |                |



### **Model Answer: Winter - 2022**

**Subject: Applied Mechanics** 

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marks | Total<br>Marks |
|-------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q. 2        | c)           | For differential wheel and axle, the diameter of wheel is 36 cm and the diameters of axles are 9 cm and 6 cm. If the efficiency of machine is 80%, effort applied is 120 N, then find the load lifted by it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 12             |
|             | Ans.         | Given: Differntial Axle and Wheel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                |
|             |              | D = 36 cm; $d_1$ = 9 cm; $d_2$ = 6 cm; $\eta$ = 80 %; P = 120 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                |
|             |              | Find: W = ?<br>Solution: VR = $\frac{2D}{d_1 - d_2} = \frac{2 \times 36}{9 - 6} = 24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1     |                |
|             |              | $\eta = \frac{MA}{VR} \times 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1     |                |
|             |              | $\eta = \frac{(W/P)}{VR} \times 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 4              |
|             |              | $80 = \frac{(W/120)}{24} \times 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                |
|             |              | $80 = \frac{W}{120 \times 24} \times 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1     |                |
|             |              | $W = \frac{80 \times 120 \times 24}{100}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1     |                |
|             |              | $\boxed{W = 2304 \text{ N}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1     |                |
|             | d)           | Draw FBD for a ladder of length 'L', self-weight 'W', resting on rough horizontal floor and leaning against rough vertical wall. Angle between ladder and horizontal floor=0 Co-efficient of friction at floor = $\mu_f$ Co-efficient of friction at floor = $\mu_w$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                |
|             | Ans.         | FBD for a ladder:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                |
|             |              | $F_{w} = \mu_{w} R_{w}$ $R_{w}$ | 4     | 4              |
|             |              | MX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                |
|             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                |



### **Model Answer: Winter - 2022**

**Subject: Applied Mechanics** 

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                  | Marks | Total<br>Marks |
|-------------|--------------|----------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q. 3        | Quer         | Attempt any THREE of the following:                                                                            |       | (12)           |
|             | <b>a</b> )   | Find the resultant force in magnitude and direction for the force                                              |       |                |
|             | Ans.         | system shown in Fig. No. 2. Use analytical method.                                                             |       |                |
|             | AIIS.        | Find: R=?; $\theta$ =?                                                                                         |       |                |
|             |              | Solution:                                                                                                      |       |                |
|             |              | $\sum Fx = 0$                                                                                                  |       |                |
|             |              | $\sum Fx = +1000 + 2000\cos 40^{\circ} = 2532.08$                                                              | 1     |                |
|             |              | $\sum Fy = 0$                                                                                                  | •     |                |
|             |              | $\sum Fy = +1500 + 200\sin 40^{\circ} = 2785.57$                                                               | 1     |                |
|             |              | $R = \sqrt{(\sum Fx)^2 + (\sum Fy)^2} = \sqrt{(2532.08)^2 + (2785.57)^2}$                                      |       | 4              |
|             |              | R=3764.41N                                                                                                     | 1     |                |
|             |              |                                                                                                                |       |                |
|             |              | $\theta = \tan^{-1} \left[ \frac{\sum Fy}{\sum Fx} \right] = \tan^{-1} \left[ \frac{2785.57}{2532.08} \right]$ | _     |                |
|             |              | $\theta = 47.72^{\circ}$                                                                                       | 1     |                |
|             |              |                                                                                                                |       |                |
|             | • `          | Find graphically the resultant force in magnitude and direction                                                |       |                |
|             | <b>b</b> )   | for the force system shown in Fig. No. 2.                                                                      |       |                |
|             | Ans.         | Que. No. 3 (a)                                                                                                 |       |                |
|             |              | 1500 N                                                                                                         |       |                |
|             |              | 2000 N                                                                                                         |       |                |
|             |              |                                                                                                                |       |                |
|             |              | 1000 N 90° 90°                                                                                                 |       |                |
|             |              | ®                                                                                                              |       |                |
|             |              | 1 d                                                                                                            |       |                |
|             |              | Space Diagram                                                                                                  |       |                |
|             |              |                                                                                                                |       |                |
|             |              | Length of ad = 18.8 cm / 1500 N                                                                                | 4     | 4              |
|             |              | R = length(ad) x scale                                                                                         |       |                |
|             |              | R = 18.8 × 200                                                                                                 |       |                |
|             |              | R = 3760 N                                                                                                     |       |                |
|             |              |                                                                                                                |       |                |
|             |              | 2000 N                                                                                                         |       |                |
|             |              |                                                                                                                |       |                |
|             |              | Scale: 1 cm = 200 N                                                                                            |       |                |
|             |              | à 1000N b                                                                                                      |       |                |
|             |              | Vector Diagram                                                                                                 |       |                |



### **Model Answer: Winter - 2022**

**Subject: Applied Mechanics** 

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marks | Total<br>Marks |
|-------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q. 3        | c)           | State law of machines and explain it with the help of sketch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                |
|             | Ans.         | <b>Law of machine:</b> The graphical representation of load lifted (W) by machine to the effort applied (P) to machine, given by $P = m.W + C$ ; is said to be law of that particular machine.                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1     |                |
|             |              | Effort.  (P) $P = m \cdot M^{+} C$ Straight line $C = Y - Intercept$ Slope $m = tan \left( \frac{y_2 - y_1}{x_2 - x_1} \right)$ $A - axis$ Graph of Load Vs. Effort                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1     |                |
|             |              | <b>Explanation:</b> The observations of load lifted to various efforts applied are plotted on graph of Load (W) vs. Effort (P) as shown above. All the points marked are joined with straight line. The line intersects Y-axis at certain point, which is considered as Y-intercept i.e. C. The angle made by straight line with horizontal is taken as $\Theta$ . The slope of straight line m is calculated using formula $m=\tan^{-1}((y_2-y_1)/(x_2-x_1))$ . Thus law of machine $P=m$ . W + C can be determined from graph. This means that particular machine follows the law for effort calculation for actual load to be lifted. | 2     | 4              |
|             | d)           | A certain machine lifts loads of 400 N and 600 N by an efforts of 60 N and 80 N respectively. Determine law of machine. Also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                |
|             | Ans.         | calculate efficiency of 1 kN load if VR is 24.<br>Given: $W_1 = 400 \text{ N}$ , $P_1 = 60 \text{ N}$ , $W_2 = 600 \text{ N}$ , $P_2 = 80 \text{ N}$ ; $W_3 = 1000 \text{ N}$ , $V.R. = 24$<br>Find: Law of machine =?, $P_3 = ?$<br>Solution: Using Law of machine, $P = mW + C N$                                                                                                                                                                                                                                                                                                                                                      |       |                |
|             |              | Putting given values of W & P in above equation $60 = (m \times 400) + C(i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1     |                |
|             |              | $80 = (m \times 600) + C(ii)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1     |                |
|             |              | Subtracting eqn.(ii) from (i), m=0.1 Putting value of min eqn.(i), C=20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     |                |
|             |              | $\therefore \text{ Law of machine } P = [(0.1)W + 20]N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     | 4              |
|             |              | For W <sub>3</sub> = 1000 N; $P = [(0.1 \times 1000 + 20)] = 120 \text{ N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                |
|             |              | $\eta = \frac{MA}{VR} \times 100 = \frac{(W/P)}{VR} \times 100 = \frac{(1000/120)}{24} \times 100$ $\boxed{\eta = 34.72 \%}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1     |                |



### **Model Answer: Winter - 2022**

**Subject: Applied Mechanics** 

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                                                                       | Marks | Total<br>Marks |
|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q. 4        |              | Attempt any <u>THREE</u> of the following:                                                                                                                                          |       |                |
|             | a)           | Two forces 40 N and 30 N are acting at and away from the point and making an angle of 35 <sup>0</sup> with each other. Calculate magnitude                                          |       |                |
|             | <b>A</b>     | and direction of their resultant.                                                                                                                                                   |       |                |
|             | Ans.         | Given: P=40 N, Q=30 N, R=60 N, $\theta$ =35°                                                                                                                                        |       |                |
|             |              | Find: R=?; $\alpha$ =?,                                                                                                                                                             |       |                |
|             |              | Solution: Using Law of Parallelogram of forces                                                                                                                                      |       |                |
|             |              | $R^2 = P^2 + Q^2 + (2 \times P \times Q \times \cos\theta)$                                                                                                                         | 1     |                |
|             |              | $R^{2} = 40^{2} + 30^{2} + (2 \times 40 \times 30 \times \cos 35^{\circ})$                                                                                                          |       |                |
|             |              | $R^2 = 4465.964$                                                                                                                                                                    |       |                |
|             |              | $\boxed{R = 66.82 \text{ N}}$                                                                                                                                                       | 1     | 4              |
|             |              | $\alpha = \tan^{-1} \left[ \frac{Q \cdot \sin \theta}{P + Q \cdot \cos \theta} \right] = \tan^{-1} \left[ \frac{30 \times \sin 35^{\circ}}{40 + 30 \times \cos 35^{\circ}} \right]$ | 1     |                |
|             |              | $\begin{bmatrix} P+Q \cdot \cos\theta \end{bmatrix} \qquad \begin{bmatrix} 40+30 \times \cos 35^{\circ} \end{bmatrix}$ $\boxed{\alpha = 14.92^{\circ}}$                             | 1     |                |
|             |              |                                                                                                                                                                                     |       |                |
|             | <b>b</b> )   | A sphere of weight 750 N is placed between two surface as shown in Fig. No. 3. Calculate contact reactions offered by the surfaces.                                                 |       |                |
|             |              | RA                                                                                                                                                                                  |       |                |
|             | Ans.         | RB 90° 50° 90°                                                                                                                                                                      | 1     |                |
|             |              | RA 50° 50° 1777777777777777777777777777777777777                                                                                                                                    |       |                |
|             |              | <u>LD</u>                                                                                                                                                                           |       |                |
|             |              | Find: $R_A = ?$ ; $R_B = ?$<br>Solution:Using Lami's Theorem,                                                                                                                       |       |                |
|             |              |                                                                                                                                                                                     | 1     | 4              |
|             |              | $\frac{750}{\sin 140^{\circ}} = \frac{R_A}{\sin 90^{\circ}} = \frac{R_B}{\sin 130^{\circ}}$                                                                                         | 1     | 4              |
|             |              | (1) (2) (3)                                                                                                                                                                         |       |                |
|             |              | Using term 1 and 2                                                                                                                                                                  |       |                |
|             |              | $R_A = \frac{750}{\sin 140^0} \times \sin 90^0$                                                                                                                                     | 1     |                |
|             |              | $R_A = 1166.79N$                                                                                                                                                                    |       |                |
|             |              | $R_B = \frac{750}{\sin 140^0} \times \sin 130^0$                                                                                                                                    | 1     |                |
|             |              | $R_B = 893.82N$                                                                                                                                                                     | 1     |                |



### **Model Answer: Winter - 2022**

**Subject: Applied Mechanics** 

| Que.                | Sub.                       | M. 1.1 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mala  | Total |
|---------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| No.                 | Que.                       | Wiodei Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks | Marks |
| Que.<br>No.<br>Q. 4 | Sub.<br>Que.<br>c)<br>Ans. | Model Answers  Determine the support reactions of a beam loaded as shown in Fig. No. 4.  RA RB R | Marks |       |
|                     |                            | Solution:<br>$\sum F_y = 0$ $+R_A + R_B - 20 = 0$ $R_A + R_B = 20 \text{ kN}(1)$ $\sum M_B = 0$ $+(20 \times 5) - (R_B \times 4) = 0$ $+100 = +4R_B$ $\therefore R_B = \frac{100}{4}$ $R_B = 25 \text{ kN } (\uparrow)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1   | 4     |
|                     |                            | Putting value of $R_B$ in equation (1) $R_A + R_B = 20$ $R_A + 25 = 20$ $R_A = 20 - 25$ $R_A = -5kN \text{ (-ve sign indicates } R_A \text{ is acting downwards)}$ $R_A = 5kN \text{ ($\downarrow$)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1     |       |



### **Model Answer: Winter - 2022**

**Subject: Applied Mechanics** 

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                                                                                            | Marks | Total<br>Marks |
|-------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q. 4        | d)           | A body weighing 10 kN is placed in rough horizontal plane for which $\mu$ =0.60. Calculate normal reaction, limiting force of friction, horizontal force required just to move it and angle of friction. |       |                |
|             | Ans.         | F= ?<br>////////////////////////////////////                                                                                                                                                             | 1     |                |
|             |              | W = 10  KN<br>Given: W=10 kN, $\mu = 0.60$                                                                                                                                                               |       |                |
|             |              | Find: R=?; F=?; P=?                                                                                                                                                                                      |       |                |
|             |              | Solution:<br>$\sum F_y = 0  (\uparrow + ve, \downarrow -ve)$ $+R - W = 0$                                                                                                                                |       |                |
|             |              | $+R-10=0$ $\boxed{R=10\mathrm{kN}}$                                                                                                                                                                      | 1     | 4              |
|             |              | $F = \mu \times R$ $F = 0.6 \times 10$ $\boxed{F = 6 \text{ kN}}$                                                                                                                                        | 1     |                |
|             |              | $\sum_{F_{X}=0} F_{X} = 0 \qquad (\rightarrow +ve, \leftarrow -ve)$ $+P - F = 0$ $P = F$ $\boxed{P = 6kN}$                                                                                               | 1     |                |



### **Model Answer: Winter - 2022**

**Subject: Applied Mechanics** 

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                | Marks | Total<br>Marks |
|-------------|--------------|------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q. 4        | e) Ans.      | Calculate analytically the support reactions of the beam loaded as shown in Fig. No.5.  40 KN  48 KN.m  RA  RB  RB           |       |                |
|             |              | Find: $R_A = ?$ ; $R_B = ?$ Solution: $\sum F_y = 0$ $+R_A + R_B - 40 = 0$ $R_A + R_B = 40 \text{ kN}(1)$                    | 1     |                |
|             |              | $\sum_{A} M_{B} = 0$ +(40×2) + 48 - (R <sub>B</sub> ×8) = 0<br>+128 = +8R <sub>B</sub><br>$\therefore R_{B} = \frac{128}{8}$ | 1     | 4              |
|             |              | Putting value of $R_B$ in equation (1) $R_A + R_B = 20$ $R_A + 16 = 40$ $R_A = 40 - 16$ $R_A = 24 \text{ kN } (\uparrow)$    | 1     |                |



### **Model Answer: Winter - 2022**

**Subject: Applied Mechanics** 

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                          | Marks | Total<br>Marks |
|-------------|--------------|--------------------------------------------------------------------------------------------------------|-------|----------------|
| Q. 5        |              | Attempt any <u>TWO</u> of the following:                                                               |       | <b>(12)</b>    |
|             | a)           | Determine analytically the reactions of the beam loaded as shown                                       |       |                |
|             |              | in Fig. No. 6. Also show the direction of reaction at hinged end.                                      |       |                |
|             | Ans.         | Find:R <sub>A</sub> =?; R <sub>B</sub> =?                                                              |       |                |
|             |              | Solution:                                                                                              |       |                |
|             |              | $\sum F_{y} = 0 \uparrow + ve \downarrow -ve$                                                          |       |                |
|             |              | $+R_A + R_B - 10 - 8 - (6 \times 4) = 0$                                                               |       |                |
|             |              | $+R_A + R_B - 42 = 0$                                                                                  |       |                |
|             |              | $R_A + R_B = 42 \text{ kN} (1)$                                                                        | 2     |                |
|             |              | $\sum M_A = 0$                                                                                         |       |                |
|             |              | $+(10\times3) + (8\times8) + (6\times4\times5) - (R_B\times7) = 0$ $+214 = +7R_B$                      |       |                |
|             |              | $\therefore R_{B} = \frac{214}{7}$ $R_{B} = 30.57 \text{kN}  (\uparrow)$                               | 2     | 6              |
|             |              | Putting value of $R_B$ in equation (1)<br>$R_A + R_B = 20$<br>$R_A + 30.57 = 42$<br>$R_A = 42 - 30.57$ |       |                |
|             |              | $\boxed{R_A = 11.43  \text{kN}  (\uparrow)}$                                                           | 2     |                |



### **Model Answer: Winter - 2022**

**Subject: Applied Mechanics** 

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                                                                                                                                    | Marks       | Total<br>Marks |
|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|
| Q. 5        | b)<br>Ans.   | A block of weight 450 N is placed on rough inclined plane making inclination of $20^{0}$ with horizontal. If $\mu$ =0.24, calculate the value of force to be applied parallel to the plane. Just to move the block up the plane.                 |             |                |
|             |              | A50 sin 20°  450 cos 20°  W=450 N                                                                                                                                                                                                                | 1           |                |
|             |              | Find: Force required to move up the plane, P=?  Solution: By considering inclined plane as horizontal plane,  Apply $\sum Fy = 0, \uparrow + ve, \downarrow -ve$ $+R - 450 \cos 20^{\circ} = 0$ $+R - 422.86 = 0$ $\boxed{R = 422.86 \text{ N}}$ | 2           | 6              |
|             |              | Apply $\sum Fx = 0, \rightarrow +ve, \leftarrow -ve$<br>$+P - F - 450 \sin 20^{0} = 0$<br>$+P - \mu R - 450 \sin 20^{0} = 0$<br>$+P - 0.24 \times 422.86 - 450 \sin 20^{0} = 0$<br>+P - 255.33 = 0<br>$\boxed{P = 255.33N}$                      | 1<br>1<br>1 |                |
|             |              |                                                                                                                                                                                                                                                  |             |                |



### **Model Answer: Winter - 2022**

**Subject: Applied Mechanics** 

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                                                                                                                             | Marks | Total<br>Marks |
|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q. 5        | <b>c</b> )   | Calculate magnitude, direction and position of the resultant w.r.t.                                                                                                                                                                       |       |                |
|             | Ans.         | 'A' of the forces shown in Fig. No. 7.                                                                                                                                                                                                    |       |                |
|             | 7449         | Find: R=?, $\theta$ =?, x from point A=?<br>Solution: Assume missing horizontal force = 10 N                                                                                                                                              |       |                |
|             |              | $\sum Fx = 0 \leftarrow -ve \rightarrow +ve$                                                                                                                                                                                              |       |                |
|             |              | $\sum Fx = +10+30+14.14 \cos 45^{\circ}$                                                                                                                                                                                                  |       |                |
|             |              | $\sum Fx = 49.99 \approx +50N$                                                                                                                                                                                                            |       |                |
|             |              | $\sum Fy = 0  \uparrow + ve \downarrow -ve$                                                                                                                                                                                               | 1     |                |
|             |              | l —                                                                                                                                                                                                                                       |       |                |
|             |              | $\sum Fy = +60-20+14.14 \sin 45^{\circ}$                                                                                                                                                                                                  | 1     |                |
|             |              | $\sum Fy = +30 \text{ N}$                                                                                                                                                                                                                 | •     |                |
|             |              | $R = \sqrt{(\sum Fx)^2 + (\sum Fy)^2} = \sqrt{50^2 + 30^2}$ $R = 58.309 \text{ N acting in First Quadrant}$ $\theta = \tan^{-1} \left[ \frac{\sum Fy}{\sum Fx} \right] = \tan^{-1} \left[ \frac{30}{50} \right]$ $\theta = 30.96^{\circ}$ | 1     | 6              |
|             |              |                                                                                                                                                                                                                                           |       |                |
|             |              | To find position of R from point A, apply Varignon's Theorem at point A $\sum M$                                                                                                                                                          | A     |                |
|             |              | $\sum M_A = 0$                                                                                                                                                                                                                            |       |                |
|             |              | $+(30\times2) + (20\times2) + (14.14\cos 45^{0}\times2) = 58.309\times x$<br>$+119.99 = 58.309\times x$                                                                                                                                   | 1     |                |
|             |              |                                                                                                                                                                                                                                           |       |                |
|             |              | $\therefore x = \frac{119.99}{58.309} = 2.057$                                                                                                                                                                                            |       |                |
|             |              | x = 2.057  m from point A                                                                                                                                                                                                                 | 1     |                |
|             |              | Note: If student assumes different value of force and tried to attempt, then give appropriate marks.                                                                                                                                      | 1     |                |



### **Model Answer: Winter - 2022**

**Subject: Applied Mechanics** 

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Marks | Total<br>Marks |
|-------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q. 6        |              | Attempt any <u>TWO</u> of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | (12)           |
|             | a)           | Calculate centroidal position of the lamina of negligible uniform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                |
|             | Ana          | thickness shown in Fig. No. 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                |
|             | Ans.         | Y-axis $200 \longrightarrow 0$ $mm = C$ $300 \longrightarrow 0$ $mm = C$ $mm =$ | 1     |                |
|             |              | Find: $G(\overline{x}, \overline{y}) = ?$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                |
|             |              | Solution: .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                |
|             |              | Calculation of areas:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                |
|             |              | $A_1 = L \times B = 600 \times 200 = 120000 \text{mm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                |
|             |              | $A_2 = \frac{1}{2} \times b \times h = \frac{1}{2} \times 300 \times 600 = 90000 \text{mm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     |                |
|             |              | Calculation of horizontal distances of centroids from Y-axis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                |
|             |              | $x_1 = \frac{B}{2} = \frac{200}{2} = 100 \text{mm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                |
|             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     |                |
|             |              | $x_2 = 200 + \frac{b}{3} = 200 + \frac{300}{3} = 300 \text{mm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                |
|             |              | Calculation of vertical distances of centroids from X-axis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 6              |
|             |              | $y_1 = \frac{L}{2} = \frac{600}{2} = 300 \text{mm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                |
|             |              | $y_2 = \frac{h}{3} = \frac{600}{3} = 200 \text{mm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1     |                |
|             |              | Calculation of x:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                |
|             |              | $\overline{\mathbf{x}} = \frac{(\mathbf{A}_1 \times \mathbf{x}_1) + (\mathbf{A}_2 \times \mathbf{x}_2)}{\mathbf{A}_1 + \mathbf{A}_2} = \frac{(120000 \times 100) + (90000 \times 300)}{120000 + 90000}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                |
|             |              | $\overline{x} = 185.71 \text{ mm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1     |                |
|             |              | Calculation of y:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                |
|             |              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                |
|             |              | $\overline{y} = \frac{(A_1 \times y_1) + (A_2 \times y_2)}{A_1 + A_2} = \frac{(120000 \times 300) + (90000 \times 200)}{120000 + 90000}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                |
|             |              | $\frac{-}{y} = 257.14 \text{ mm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     |                |



### **Model Answer: Winter - 2022**

**Subject: Applied Mechanics** 

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                                                                                                                                                | Marks | Total<br>Marks |
|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q. 6        | <b>b</b> )   | Locate the centroid of the composite area shown in Fig. No. 9.                                                                                                                                                                                               |       |                |
|             | Ans.         | Y-axis                                                                                                                                                                                                                                                       |       |                |
|             |              | G <sub>1</sub> R=150 mm 300 mm X-axis                                                                                                                                                                                                                        | 1     |                |
|             |              | 450 mm - * 150-)<br>mm                                                                                                                                                                                                                                       |       |                |
|             |              | Find: $G(\overline{x}, \overline{y}) = ?$                                                                                                                                                                                                                    |       |                |
|             |              | Solution: .                                                                                                                                                                                                                                                  |       |                |
|             |              | Calculation of areas:                                                                                                                                                                                                                                        |       |                |
|             |              | $A_1 = \frac{1}{2} \times b \times h = \frac{1}{2} \times 450 \times 300 = 67500 \text{mm}^2$                                                                                                                                                                |       |                |
|             |              | $A_2 = \frac{\pi R^2}{2} = \frac{\pi \times 150^2}{2} = 35342.91 \text{mm}^2$                                                                                                                                                                                | 1     |                |
|             |              | Calculation of horizontal distances of centroids from Y-axis:                                                                                                                                                                                                |       |                |
|             |              | $x_1 = \frac{2.b}{3} = \frac{2 \times 450}{2} = 300 \text{mm}$ $4 \text{R}$ $4 \times 150$                                                                                                                                                                   | 1     |                |
|             |              | $x_2 = 450 + \frac{4.R}{3.\pi} = 450 + \frac{4 \times 150}{3.\pi} = 513.66 \text{mm}$                                                                                                                                                                        |       |                |
|             |              | Calculation of vertical distances of centroids from X-axis:                                                                                                                                                                                                  |       | 6              |
|             |              | $y_1 = \frac{h}{3} = \frac{300}{3} = 100 \text{mm}$                                                                                                                                                                                                          |       |                |
|             |              |                                                                                                                                                                                                                                                              | 1     |                |
|             |              | $y_2 = \frac{D}{2} = \frac{300}{2} = 150 \text{mm}$                                                                                                                                                                                                          |       |                |
|             |              | Calculation of $\bar{x}$ :                                                                                                                                                                                                                                   |       |                |
|             |              | $ \overline{\mathbf{x}} = \frac{\left(\mathbf{A}_1 \times \mathbf{x}_1\right) + \left(\mathbf{A}_2 \times \mathbf{x}_2\right)}{\mathbf{A}_1 + \mathbf{A}_2} = \frac{\left(67500 \times 300\right) + \left(35342.91 \times 513.66\right)}{67500 + 35342.91} $ |       |                |
|             |              | $A_1 + A_2$ 67500+ 35342.91                                                                                                                                                                                                                                  | 1     |                |
|             |              | $\bar{x} = 373.42 \text{ mm}$                                                                                                                                                                                                                                | _     |                |
|             |              | Calculation of $\overline{y}$ :                                                                                                                                                                                                                              |       |                |
|             |              | $ \overline{y} = \frac{(A_1 \times y_1) + (A_2 \times y_2)}{A_1 + A_2} = \frac{(67500 \times 100) + (35342.91 \times 150)}{67500 + 35342.91} $                                                                                                               |       |                |
|             |              |                                                                                                                                                                                                                                                              |       |                |
|             |              | y = 117.18  mm                                                                                                                                                                                                                                               | 1     |                |



### **Model Answer: Winter - 2022**

**Subject: Applied Mechanics** 

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                                                                                                                                                                                                                     | Marks | Total<br>Marks |
|-------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q. 6        | c)           | Calculate position of center of gravity of the frustum of cone as shown in Fig. No. 10.                                                                                                                                                                                                                                           |       |                |
|             | Ans.         | Find: $G(\overline{x}, \overline{y}) = ?$                                                                                                                                                                                                                                                                                         | 1     |                |
|             |              | Solution: Assuming frustum cut from right circular cone as shown.                                                                                                                                                                                                                                                                 |       |                |
|             |              | To find h; from similar triangles,<br>$ \frac{760}{h+500} = \frac{400}{h} $ ∴ on solving we get, h=555.55 mm<br>∴ H=h+500=555.55+500=1055.55 mm                                                                                                                                                                                   | 1     |                |
|             |              | Calculation of x : As given section is symmetrical @ Y-Y axis,<br>$x = Base diameter = \frac{760}{2} = 380mm$                                                                                                                                                                                                                     |       |                |
|             |              | $\frac{\overline{x} = 380 \text{ mm from Y-Yaxis}}{2}$                                                                                                                                                                                                                                                                            | 1     | 6              |
|             |              | To find $\overline{y}$ :                                                                                                                                                                                                                                                                                                          |       |                |
|             |              | Calculation of volume:<br>$V_{1} = \frac{1}{3} \times \pi \times R^{2} \times H = \frac{1}{3} \times \pi \times 380^{2} \times 1055.55 = 159.615 \times 10^{6} \text{ mm}^{3}$ $V_{2} = \frac{1}{3} \times \pi \times r^{2} \times h = \frac{1}{3} \times \pi \times 200^{2} \times 555.55 = 23.270 \times 10^{6} \text{ mm}^{3}$ | 1     |                |
|             |              | Calculation of vertical distances of centroids from X-axis:<br>$y_1 = \frac{h}{4} = \frac{1055.55}{4} = 263.88 \text{ mm}$<br>$y_2 = 500 + \left(\frac{h}{4}\right) = 500 + \left(\frac{555.55}{4}\right) = 638.88 \text{ mm}$                                                                                                    | 1     |                |
|             |              | Calculation of $\overline{y}$ : $\overline{y} = \frac{(V_1 \times y_1) - (V_2 \times y_2)}{V_1 - V_2} = \frac{(159.615 \times 10^6 \times 263.88) - (23.270 \times 10^6 \times 638.88)}{(159.615 \times 10^6) - (23.270 \times 10^6)}$ $\overline{y} = 199.87 \text{ mm from X-axis}$                                             | 1     |                |